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Abstract

The Boolean satisfiability (SAT) problem asks if, given a propositional formula, there is some
way to assign truth values to its variables that render the formula true. SAT is NP-complete, so
a general efficient algorithm for solving it may not exist. However, SAT problems encountered
in industrial applications tend to exhibit some structure that make them efficiently solvable in
practice. This Bachelor’s thesis presents a popular approach to solving such SAT problems that is
based on so-called conflict-driven clause learning (CDCL). It also discusses a handful of tweaks
commonly implemented, in some form or other, in current CDCL-based SAT solvers. Finally, it
explains how planning problems can be solved using SAT solvers and illustrates this process
using two types of examples.
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Chapter 1

Introduction

1.1 Context and goal

The Boolean satisfiability problem, or SAT for short, asks if, given some formula in propositional
logic, there exists a value assignment to the variables occurring in this formula that render the
entire formula true. While SAT is known to be NP-complete (Cook, 1971), many large instances
of SAT emerging from applications in industry are routinely and efficiently solved. To give
the reader some sense of the size of such SAT instances, the 2023 SAT Competition featured
forty-nine sequential (i.e., non-parallel, non-cloud-based) SAT solvers that attempted to solve 400
benchmark problems (see https://satcompetition.github.io/2023/). These benchmarks are
biased against relatively easy problems and can feature thousands or even millions of variables
and clauses; see Figure 1.1 on the following page. The winning submission for 2023 was able to
solve 284 of these 400 benchmarks within the allotted time of 5,000 CPU seconds per problem,
and 346 of the problems could be solved by at least one of the sequential competitors.

The watershed in SAT solver engineering was the development of solvers that learn new
implicates of the propositional formula that they are given (Marques-Silva & Sakallah, 1996,
1999). For reasons that will become clear in the next chapter, the technique used to derive such
new implicates is known as conflict-driven clause learning (CDCL). My first goal in this thesis
is to describe a generic SAT solver that is based on conflict-driven clause learning (Chapter 2).
To that end, I will spell out and prove key properties of such a generic solver. In descriptions
of CDCL-based SAT solvers, these properties are typically explained through examples or by
means of rough proof sketches. Where detailed proofs exist, I found it difficult to reconcile the
formalisms used in different publications with each other. The proofs that I present are my own
and represent my attempt to elucidate the how and why of CDCL-based SAT solving in a coherent
way.

My second goal is to present a handful of tweaks that are commonly implemented in current
CDCL-based SAT solvers (Chapter 3). As a glance at the solver descriptions from any SAT

Competition will reveal, SAT solvers differ considerably in their precise implementations. Some
of these tweaks are situated mostly at the computational level (e.g., involving data structures
and caching), others are situated more at the logical and conceptual level. At the latter level,
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Figure 1.1: Sizes of the 400 benchmarks used in the 2023 SAT Competition.
The benchmarks are available from https://satcompetition.github.io/

2023/.

I have identified five tweaks that are implemented in some form or other in most current SAT

solvers. I discuss two of these in some detail and the three others in broad strokes.

My third and final goal is to showcase an application of SAT solving: its use in solving planning
problems (Chapter 4). I will explain what planning problems are and how they can be converted
into SAT problems. Moreover, I will present two examples of what this conversion may look like
in practice. I also provide computer code in the form of small package for the Julia programming
language that can be used to generate similar examples.

1.2 Preliminaries

For ease of reference, I largely adopt the notation and basic definitions used by Marques-Silva
et al. (2021) with a few minor modifications and additions. My wording unavoidably overlaps
with theirs.

Definition 1.1. Propositional variables are denoted by lower-case Latin letters, with or without
subscript (e.g., x1, x2, . . . , a, b, . . . , z). Given a set V of such propositional variables, propositional
formulas – denoted by calligraphic uppercase letters such as F – are defined in the following
way.

1. If x ∈ V, then F = x is a propositional formula.

2. If F is a propositional formula, then so is (¬F ) (‘not F ’).

3. If F ,G are both propositional formulas, then so is (F ∨ G) (‘F or G’).

4. If F ,G are both propositional formulas, then so is (F ∧ G) (‘F and G’).

https://satcompetition.github.io/2023/
https://satcompetition.github.io/2023/
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While one can include in this definition further connectives such as implication and equivalence,
these are not needed in what follows. The set of all propositional variables that occur in a
propositional formula F will be denoted by var(F ).

If x ∈ V is a propositional variable, then we call both x and its complement ¬x literals. We will
write x in lieu of ¬x. Literals will be denoted by ℓ1, ℓ2, . . . . Finite sets of literals are referred to as
clauses and are denoted by c1, c2, . . . . Throughout this thesis, such clauses are to be interpreted
as disjunctions, that is, a clause

c1 = {ℓ1, ℓ2, . . . , ℓn}

is to be interpreted as
c1 = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn.

The cardinality of a clause is referred to as its width.

If a formula F is represented as a conjunction of clauses, that is, if

F = c1 ∧ · · · ∧ cm,

we say that F is in conjunctive normal form (CNF). Finite sets of clauses are to be interpreted as
conjunctions. ♢

Thus, for instance, the formula

F = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4)

may be represented as
F = {{x1, x2}, {x2, x3, x4}}

and vice versa.

Definition 1.2. Propositional variables can be assigned values. For the purposes of SAT solving,
a value assignment is defined as a function ν : V→ {0, 1, u}, where ν(x) = u signifies that the
value of x is as yet undefined. If ν(x) = u, we call the variable x unassigned. If ν(x) ∈ {0, 1}, we
call the variable x assigned. Literals inherit their assignment status (i.e., assigned or unassigned)
from their variable.

If ν(V) ⊂ {0, 1}, ν is called a complete assignment. Otherwise, i.e., if u ∈ ν(V), ν is called a
partial assignment.

If ν, ν′ are value assignments over V such that both ν(x) = 1 implies ν′(x) = 1 and ν(x) = 0
implies ν′(x) = 0 for all x ∈ V, we call ν′ an extension of ν. We write ν ⊂ ν′, and we also say
that ν′ extends ν.

For a given assignment ν over V, the value F ν of a propositional formula F is defined as follows.

1. If F = x, x ∈ V, then F ν = ν(x).
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2. If F = (¬G), then

F ν =


0, if Gν = 1,

1, if Gν = 0,

u, otherwise.

3. If F = (E ∨ G), then

F ν =


1, if E ν = 1 or Gν = 1,

0, if E ν = 0 and Gν = 0,

u, otherwise.

4. If F = (E ∧ G), then

F ν =


1, if E ν = 1 and Gν = 1,

0, if E ν = 0 or Gν = 0,

u, otherwise.

If F ν = 1, the assignment ν is called a model (of F ) or a satisfying assignment. ♢

If a model ν is a partial assignment, we can easily obtain a complete satisfying extension ν′ of ν,
for instance by setting ν′(x) = 0 for all x ∈ V with ν(x) = u.

Definition 1.3. Let F and G be propositional formulas. If F ν = 1 implies Gν = 1 for any
complete value assignment ν, then we call G an implicate of F . ♢

Clauses of a CNF formula fall into one of four categories.

Definition 1.4 (Categories of CNF clauses). Let c = {ℓ1, . . . , ℓn} be a clause in some propositional
CNF formula. If ℓν

i = 0, i = 1, . . . , n, then we call c falsified. If ℓν
i = 1 for some 1 ≤ i ≤ n, then

we call c satisfied. If ℓν
i = u for exactly one 1 ≤ i ≤ n and ℓν

j = 0 for all 1 ≤ j ≤ n, j ̸= i, then we
call c unit. In all other cases, we call c unresolved. ♢

Throughout this thesis, it is assumed that the propositional formulas we are working with are
in conjunctive normal form, and I will use whichever of these two representations is more
convenient. For the purposes of SAT solving, the assumption that the formulas are in CNF is not
a genuine restriction: Given an arbitrary formula F in propositional logic, efficient algorithms
exist for generating a formula F ′ in CNF with the properties that F ′ is satisfiable if and only if F
is satisfiable and that any model ν of F ′ is also a model of F (e.g., the Tseitin transformation, see
Tseitin, 1983; also see Kuiter et al., 2022).

Since we define clauses to be sets of literals, we may assume in the following that any given
literal occurs at most once in any given clause. Similarly, since we define CNF formulas as sets
of clauses, we may assume that a CNF formula does not contain duplicated clauses. Moreover,
since any disjunction featuring both a literal ℓ and its negation ¬ℓ are automatically satisfied by
any complete assignment and since we interpret clauses as disjunctions, we may further assume
that any given clause does not contain both ℓ and its negation.

Further definitions and conventions will be introduced when they are easier to motivate.



Chapter 2

Bare-bones conflict-driven clause learning

Conflict-driven clause learning SAT solvers are based on three key principles. The first is that if a
clause is unit, this clause’s unassigned literal needs to evaluate to 1 if the entire formula is to
be satisfied. This principle is the basis of a subroutine known as unit propagation. The second
key principle is that if a given provisional value assignment causes a clause to be falsified, this
provides us with information about the problem at hand that we can leverage when looking
for a solution. This principle leads to the twin practices of conflict analysis and clause learning.
Third, conflict analysis yields information as to which provisional value assignments ought to
be revised in a process known as backtracking. In this chapter, I first elucidate these three key
principles and the routines they give rise to. I then explain how these can be combined into a
no-frills CDCL-based algorithm for SAT solving. In the next chapter, I will discuss a few tweaks
that are commonly implemented in SAT solvers.

2.1 Unit propagation

The backbone of SAT solvers is the unit clause rule (Davis & Putnam, 1960).

Lemma 2.1 (Unit clause rule). Let F be a propositional formula in CNF. Let ν be a value assignment
over V ⊃ var(F ). Let c ∈ F be a unit clause under ν with ℓ as its sole unassigned literal. Then any
value assignment ν′ that extends ν and satisfies F must yield ℓν′ = 1.

Proof. The CNF formula F is satisfied if and only if all its clauses are satisfied. An extension ν′ of
ν satisfies the unit clause c if and only if ℓν′ = 1.

By the unit clause rule, the unassigned literal in any unit clause needs to be set to 1 in any
satisfying extension of the current value assignment. That is, if we are in the process of
constructing a value assignment ν and the unassigned literal in a unit clause has the form
x ∈ V, we need to set ν(x) = 1; if the unassigned literal has the form x, we need to set ν(x) = 0.
This may result in further clauses becoming unit, and the unit clause rule can again be applied
to these. The iterated application of the unit clause rule is referred to as unit propagation (also
known as Boolean constraint propagation). If a variable was assigned a value in {0, 1} through
unit propagation, it is said to be implied. Before introducing the unit propagation routine more
formally, let’s take a look at an example.

5
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Example 2.2 (Unit propagation). Consider the propositional formula

F =
(

a ∨ b
)

︸ ︷︷ ︸
=c1

∧ (b ∨ c)︸ ︷︷ ︸
=c2

∧ (c ∨ d)︸ ︷︷ ︸
=c3

∧
(

e ∨ f
)

︸ ︷︷ ︸
=c4

∧ (b ∨ g)︸ ︷︷ ︸
=c5

.

and assume that ν(a) = 1, whereas all other variables occurring in F are as yet unassigned.
The clause c1 contains exactly one unassigned variable and all of its other literals evaluate to
0. Hence, c1 is unit. Applying the unit clause rule, we find that we need to set ν(b) = 0 so that(

b
)ν

= 1. This causes the clauses c2 and c5 to become unit, which induces the assignments
ν(c) = 0, ν(g) = 1. This, in turn, causes clause c3 to become unit, leading to the assignment
ν(d) = 1. At this juncture, no unit clauses remain in F , and the present bout of unit propagation
ends. ♢

As the example demonstrates, unit propagation not only identifies some of the value assignments
necessary in a model of a formula given the current partial assignment, it can also identify the
unit clauses that led to these additional value assignments. In Example 2.2, the value assignment
ν(b) = 0 was derived from clause c1, ν(c) = 0 was derived from c2, ν(g) = 1 from c5, and
ν(d) = 1 from c3.

A variable can be also assigned a value by a decision if unit propagation terminates and the
formula does not contain any falsified clauses. Such variables are known as decision variables. In
this case, SAT solvers pick one of the as yet unassigned variables x and assign to it a value ν(x) ∈
{0, 1}. While sophisticated procedures exist for deciding on this new value assignment, for our
present purposes, we only need to assume that some helper function PickBranchVariable()

exists that selects an unassigned variable and assigns either 0 or 1 to it. In the examples to follow,
I assume that the function PickBranchVariable() selects the lexicographically first unassigned
variable in V and assigns to it the value 1. More sophisticated approaches are discussed in
Chapter 3.

Definition 2.3. Let F be a CNF formula and let x ∈ var(F ) be a propositional variable it contains.
If x is an implied variable whose value was set after applying the unit clause rule to the clause
c ∈ F , we refer to c as the antecedent of the value assignment of x. We write α(x) = c. If a
variable was assigned a value in {0, 1} by a decision rather than by unit propagation, we set its
antecedent to α(x) = d, where we assume that d /∈ F . If a variable has not yet been assigned
a value in {0, 1}, that is, if ν(x) = u, we write α(x) = n, where we assume that n /∈ F and
n ̸= d. ♢

The antecedent of any given x ∈ var(F ) need not be unambiguously defined by the propositional
formula F and the current partial value assignment ν. Consider, for instance, the propositional
formula

F = (a)︸︷︷︸
=c1

∧ (b)︸︷︷︸
=c2

∧ (a ∨ c)︸ ︷︷ ︸
=c3

∧
(

b ∨ c
)

︸ ︷︷ ︸
=c4

.

A single bout of unit propogation will yield the value assignments ν(a) = ν(b) = ν(c) = 1.
However, after having set the value assignments of a and b, the assignment ν(c) = 1 can be
obtained by applying the unit clause rule to either c3 or c4. That said, our unit propagation
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routine will consider one unit clause at a time – not all unit clauses simultaneously. Whichever
unit clause the routine used to determine the value assignment of x counts as its antecedent.

By alternating unit propagation and setting value assignments by decision, a decision stack is
constructed. At the outset, before any value assignment by decision has been carried out, the
decision stack has depth 0. Any value assignments carried out through unit propagation are
added to the stack at this depth, without incrementing the stack’s depth. If a value assignment
by decision is carried out, the stack’s depth is incremented, and both the newly set variable as
well as all new value assignments that follow by unit propagation are added to the stack at its
new depth.

Definition 2.4. The stack depth with which a value assignment is associated is referred to as
its decision level; we write δ(x) for the decision level of value assignment of a variable x. If a
variable x is unassigned, its decision level is defined to be δ(x) = u. ♢

In the context of CDCL-based SAT-solving, it is convenient to keep track of both the current value
assignments as well as the antecedents and decision levels associated with them by packing this
information in a set of tuples, which I call an augmented value assignment.

Definition 2.5. Let V be a set of propositional formulas and let ν be a value assignment over V.
Then the augmentation of ν is defined as

N := {(x, ν(x), δ(x), α(x)) : x ∈ V}.

(N is the uppercase version of ν, the thirteenth letter in the Greek alphabet) We also call N an
augmented value assignment. ♢

It is common in the literature to abuse notation and use the same symbol ν to refer to both
the value assignment (a map from V to {0, 1, u}, i.e., technically a set of 2-tuples) and its
augmentation (a set of 4-tuples). Since the value assignment proper may exist independently of
a CDCL-based SAT solver but its augmentation only makes sense when discussing the workings
of such solvers, it may make sense to keep both concepts distinct. Given an augmented value
assignment N, it is clearly child’s play to deduce the corresponding value assignment ν.

It is also convenient to be able to talk about a literal’s decision level and antecedent, which are
defined straightforwardly by inheritance from the literal’s variable. In other words, if ℓ = x or
ℓ = x, x ∈ V, we define α(ℓ) := α(x) and δ(ℓ) := δ(x).

With the key terms defined, it is time to present the pseudocode for the unit propagation routine,
see Algorithm 2.1. The UnitClauseRule() helper function on line 6 identifies the variable var of
the unassigned literal in a unit clause and deduces which value val to set it to in order to satisfy
the clause. The Assign() helper function on the next line removes the 4-tuple associated with
var from the current augmented value assignment N and adds the 4-tuple that it is fed to N. The
routine terminates with the return value false if the value assignment causes a clause to be
falsified and with the return value true if each clause in F is either satisfied or unresolved. The
meaning of the third line will become clear in the next definition.
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Global : A set of clauses representing a propositional formula F in CNF
A set of 4-tuples N representing an augmented value assignment, to be updated
The current decision level DLevel

Output: F ν ̸= 0?
1 UnitPropagation()
2 if exists falsified c ∈ F then
3 α(⊥) := c
4 return false

5 while exists unit ci ∈ F do
6 (var, val)← UnitClauseRule(ci)
7 Assign(var, val, DLevel, ci)
8 if exists falsified cj ∈ F then
9 return false

10 return true

Algorithm 2.1: The unit propagation routine.

From now on, it is understood that any augmented value assignment N has been constructed by
alternatingly applying unit propagation and value assignment by decision to some CNF formula
F with var(F ) ⊂ V.

Definition 2.6. Let N be an augmented value assignment. The implication graph corresponding
to N is defined to be the tuple I = (VI , EI), where VI is the vertex set and EI is the edge set,
which are in turn defined as follows. First,

VI :=

{x ∈ V : δ(x) ̸= u}, if no clause c ∈ F is falsified,

{x ∈ V : δ(x) ̸= u} ∪ {⊥}, else,

where we assume that ⊥ /∈ V. If unit propagation causes clause c ∈ F to become satisfied, we
also define the antecedent of ⊥ to be α(⊥) = c, whereas the decision level of ⊥ is the current
decision level. More precisely, if ⊥ ∈ VI , then

δ(⊥) := max{δ(x) : x ∈ V, δ(x) ̸= u}.

Second, we define

EI := {(a, b) ∈ VI ×VI : a ∈ α(b) or a ∈ α(b), and a ̸= b}. ♢

Since an implication graph’s edges reflect the flow of unit propagation, it is a directed acyclic
graph. Further, since each variable with an ingoing edge has exactly one clause as its antecedent,
we may label any directed edge (a, b) ∈ EI with α(b). From now on, it is understood that any
implication graph I is based on some augmented value assignment N. Further, it is common to
slightly abuse notation when depicting implication graphs and to represent an assigned variable
x as x if ν(x) = 1 and as x if ν(x) = 0. I, too, will adopt this convention.
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0 ∅ a b
c2

1 c

2 d e f

c4

c4

c3

c3

Level Decision Unit propagation

Figure 2.1: The implication graph to Example 2.7. It is assumed that value
assignment by decision proceeds lexicographically and always assigns the
value 1 to the variable.

Example 2.7 (Implication graph without falsified clauses). Consider the formula

F = a︸︷︷︸
=c1

∧ (a ∨ b)︸ ︷︷ ︸
=c2

∧ (c ∨ e ∨ f )︸ ︷︷ ︸
=c3

∧
(

a ∨ d ∨ e
)

︸ ︷︷ ︸
=c4

.

Alternating unit propagation and our rudimentary PickBranchVariable() routine, we find a
model for F without running into any conflicts; see Figure 2.1. ♢

Example 2.8 (Implication graph with a falsified clause). Consider the formula

F =
(

a ∨ d
)

︸ ︷︷ ︸
=c1

∧
(

a ∨ b ∨ f
)

︸ ︷︷ ︸
=c2

∧ (c ∨ e ∨ f )︸ ︷︷ ︸
=c3

∧ (c ∨ g)︸ ︷︷ ︸
=c4

∧ (e ∨ g)︸ ︷︷ ︸
=c5

.

Alternating unit propagation and our rudimentary PickBranchVariable() routine, we obtain a
falsified clause; see Figure 2.2. Note also that no value assignment can be made before the first
value assignment by decision. ♢

2.2 Conflict analysis and clause learning

If unit propagation leads to a conflict, SAT solvers need to roll back one or several value assign-
ments and explore a hitherto unexplored region of the search space. As their name suggests,
conflict-driven clause-learning algorithms let guide the search for a satisfying assignment by
adding to the propositional formula additional implicates that are deduced from conflicts. In
what follows, I first discuss a general approach for deducing such implicates. I then show that
the approach described by Marques-Silva & Sakallah (1999) is a special case of this more general
approach.

2.2.1 Conflict sets

Darwiche & Pipatsrisawat (2021) discuss the importance of particular vertex subsets of implica-
tion graphs in SAT solving. The following definition is distilled from their discussion.
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0 ∅

1 a d
c1

2 b f

c2

c2

3 c e
c3

c3

g
c4

⊥
c5

c5

Level Decision Unit propagation

Figure 2.2: The implication graph to Example 2.8. It is assumed that value
assignment by decision proceeds lexicographically and always assigns the
value 1 to the variable.

Definition 2.9. Let I = (VI , EI) be the implication graph associated with a value assignment that
led to a conflict, i.e., ⊥ ∈ VI . Then a conflict partition of I is any tuple (A, B) of vertex subsets
satisfying the following conditions:

1. A, B is a partition of VI . That is, A ∪ B = VI , A ∩ B = ∅.

2. Any decision variable of I belongs to A. That is, for all x ∈ VI , α(x) = d implies x ∈ A.

3. The conflict node belongs to B, i.e., ⊥ ∈ B.

4. For all a ∈ A, b ∈ B, we have (b, a) /∈ EI . In other words, no edges flow from B to A.

Given a conflict partition (A, B) of I, we define its associated conflict set C as

C := {a ∈ A : (a, b) ∈ EI for some b ∈ B}. ♢

As the next lemma shows, the current value assignments to the variables in the conflict set cannot
be extended to a satisfying assignment.

Lemma 2.10. Let (A, B) be a conflict partition of an implication graph associated with a conflict, with
C ⊂ A being this partition’s conflict set. Let ν be the value assignment that led to the conflict. Let ν̃ ⊂ ν

be the value assignment defined through

ν̃(x) =

ν(x), if x ∈ C,

u, else.

Then unit propagation applied to ν̃ will yield a conflict.
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Proof. We prove this lemma by induction on n = #B. In the base case (n = 1), B = {⊥}. The
conflict set comprises exactly all variables in α(⊥). So the value assignments to these variables
imply the conflict.

Now consider the case #B = n + 1. Since I is a directed acyclic graph, there exists at least one
b ∈ B \ {⊥} that does not have any edges entering it from another vertex in B. Either this b does
not have any edges entering it at all (if its value was set by unit propagation at decision level 0) or
all edges entering it originate in C. In either case, we can use unit propagation to determine the
value assignment of this b in any satisfying extension of ν̃. Since there are no vertices in B with
edges going into b, we may consider the conflict partition (A ∪ {b}, B \ {b}). By the induction
hypothesis, unit propagation applied to the value assignment to the conflict set associated with
(A ∪ {b}, B \ {b}) will yield a conflict.

The relevance of this lemma is this. Given a conflict set C = {x1, . . . , xn}, we know that the
value assignments ν(x1), . . . , ν(xn) will lead to a conflict. Hence, any satisfying and complete
value assignment ν̃ will need to set ν̃(xi) to 1− ν(xi) for at least one i ∈ {1, . . . , n}. Hence, the
single-clause CNF formula

{ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn},

where

ℓi =

xi, if ν(xi) = 0,

xi, if ν(xi) = 1,

for i = 1, . . . , n, is an implicate of F .

Definition 2.11. Let F be a CNF formula and let ν be a partial value assignment over var(F )
such that unit propagation yields a conflict in F . Let C = {x1, . . . , xn} ⊂ var(F ) be a conflict set.
Then we call

ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn,

where

ℓi =

xi, if ν(xi) = 0,

xi, if ν(xi) = 1,

for i = 1, . . . , n, a conflict-induced clause. ♢

Lemma 2.12. Let F be a propositional formula in CNF. Let {c} be an implicate of F . Then F is satisfiable
if and only if F ∪ {c} is satisfiable.

Proof. If a value assignment ν satisfies F , then it also satisfies all of the implicates of F . So ν

also satisfies the conjunction of F and any of its implicates. Since F ⊂ F ∪ {c}, any satisfying
assignment of F ∪ {c} satisfies F .

This lemma implies that newly learnt implicates may be added to the CNF formula without
affecting its satisfiability. Moreover, any satisfying assignment for the enlarged formula is also a
satisfying assignment for the original formula. The advantage of adding such conflict-induced
implicates to the CNF formula is that doing so prevents the same conflicting value assignments
from being made. To see this, assume that the value assignment ν gave rise to a conflict and
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that a conflict-induced clause with m literals was added to the CNF formula as a result. Unit
propagation and value assignment by decision assign values to variables one at a time. So assume
that in the process of constructing a value assignment, we obtain a partial value assignment ν̃

that evaluates exactly m− 1 variables in this clause to the same values as ν did and leaves one
variable unassigned. Then unit propagation guarantees that we will set the value assignment
to this last variable xm to ν̃(xm) = 1− ν(xm). The value assignment ν̃ may of course still yield
conflicts, but these would be the consequence of a different partial value assignment. For a
related reason, it is particularly conflict-induced clauses that contain exactly one literal at the
current decision level that are interesting in SAT solving.

Lemma 2.13. Let F be a CNF formula and let ν be a value assignment over V ⊃ var(F ) resulting in
a conflict. Assume that δ(⊥) ≥ 1. Let c be a clause induced by this conflict such that δ(ℓ) = δ(⊥) for
exactly one ℓ ∈ c. Then c /∈ F .

Proof. All variables occurring in c were set at a lower decision level than δ(⊥) ≥ 1 except for one.
So if c ∈ F , c would have been a unit clause at a lower decision level, so that δ(ℓ) < δ(⊥).

The assumption δ(⊥) ≥ 1 does not represent a genuine restriction: if δ(⊥) = 0, the CNF formula
is necessarily unsatisfiable.

2.2.2 Basic clause learning algorithm

A basic clause learning algorithm was proposed by Marques-Silva & Sakallah (1996, 1999). The
following explanation of this algorithm is based on theirs with some modifications in notation.
As we will see, this algorithm enables us to learn useful implicates in the sense of Lemma 2.13.

Definition 2.14. For every x ∈ V∪ {⊥}, we let A(x) denote the subset of variables whose value
assignments directly implied the value assignment of x; if x is not an implied variable or the
conflict node, A(x) = ∅. More precisely, we define

A(x) := {y ∈ V : y ∈ α(x) \ {x} or y ∈ α(x) \ {x}}.

We call this set the set of antecedent variables of x. ♢

Definition 2.15. We can partition A(x) into those variables whose value assignments were
effected at a lower decision level than δ(x) and whose value assignments were effected at δ(x),
that is into

Λ(x) := {y ∈ A(x) : δ(y) < δ(x)}

and
Σ(x) := {y ∈ A(x) : δ(y) = δ(x)}.

We may now define for all x ∈ V∪ {⊥} a set of variables whose value assignments jointly imply
the value assignment for x (if x ∈ V) or that jointly lead to a conflict (if x = ⊥). While several
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such sets may exist, the one we are interested in is recursively defined as follows:

causes of : VI′ → 2VI′ ,

x 7→

{x}, if A(x) = ∅,

Λ(x) ∪
[⋃

y∈Σ(x) causes of(y)
]

, else.

♢

These definitions differ somewhat from those proposed by Marques-Silva & Sakallah (1999),
who define A(x) as a set of tuples (y, ν(y), δ(y), α(y)) ⊂ N, which they called the antecedent
assignment of x. Similarly, they define the sets Λ(x), Σ(x), and causes of(x) as sets of tuples.
However, I found that doing so clutters formulas and results in easily avoidable circumlocutions.
On the basis of our A(x), we may still retrieve the current value assignments, decision levels,
and antecedent clauses using the ν, δ, and α functions.

If a conflict is identified, a new clause is constructed as follows:

cnew :=
∨

x∈causes of(⊥)
xν(x), (2.1)

where xν(x) := x if ν(x) = 0 and xν(x) := x if ν(x) = 1. The case where ν(x) = u cannot occur
for x ∈ causes of(⊥).

Below, we will see that causes of(⊥) can be interpreted as a kind of conflict set and that cnew

can similarly be interpreted as a kind of conflict-induced clause (cf. Definition 2.11). But first, a
few examples are in order. In these, I slightly abuse notation and write x in lieu of x if ν(x) = 0.

Example 2.16. Example 2.8 ended in a conflict. We obtain

Λ(⊥) = ∅

as well as
Σ(⊥) = {e, g}.

The antecedent assignments of e and g are partitioned as

Λ(e) = { f }, Σ(e) = {c}

and
Λ(g) = ∅, Σ(g) = {c}.

Since A(c) = ∅, we have
causes of(⊥) = {c, f }.

Hence,
cnew = c ∨ f .
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This example also shows that causes of(⊥) = {c, f } is but one subset of variables whose
associated value assignments jointly lead to the conflict. The set {a, b, c} would be another one,
as would other sets encompassing {c, f }. ♢

Example 2.17. Marques-Silva et al. (2021) discuss clause learning in a more informal, high-level
way than do Marques-Silva & Sakallah (1999). The reader may find it instructive to compare
how the former derive a clause to how clauses of(x) works.

In their example 4.2.5, Marques-Silva et al. (2021) consider the conflict that arises in the formula

F =
(

a ∨ b ∨ c
)

︸ ︷︷ ︸
=c1

∧ (a ∨ d)︸ ︷︷ ︸
=c2

∧
(

c ∨ d ∨ e
)

︸ ︷︷ ︸
=c3

∧
(

h ∨ e ∨ f
)

︸ ︷︷ ︸
=c4

∧ (e ∨ g)︸ ︷︷ ︸
=c5

∧
(

f ∨ g
)

︸ ︷︷ ︸
=c6

after carrying out the following value assignments by decision: ν(h) = ν(b) = ν(y) = 1. Figure
2.3 shows the implication graph for this problem. In their Table 4.1, they derive the learnt clause
(h ∨ b ∨ a) in a way that I found easy to understand but hard to put into pithy pseudocode
without relying on causes of. If we run causes of(⊥) on the same problem, we obtain the
following derivation:

causes of(⊥) = Λ(⊥)︸ ︷︷ ︸
=∅

∪ causes of( f ) ∪ causes of(g)

= Λ( f ) ∪ causes of(e) ∪Λ(g)︸ ︷︷ ︸
=∅

∪ causes of(e)

= {h} ∪Λ(e)︸︷︷︸
=∅

∪ causes of(c) ∪ causes of(d)

= {h} ∪Λ(c) ∪ causes of(a) ∪Λ(d)︸ ︷︷ ︸
=∅

∪ causes of(a)

= {h} ∪ {b} ∪ {a}

= {h, b, a},

since A(a) = ∅. The learnt clause is hence again cnew = h ∨ b ∨ a. ♢

In the light of our preceding discussion of conflict sets, it is tempting to try to make sense of
the set causes of(⊥) as a conflict set associated with the implication graph that gave rise to the
present conflict. As the next example shows, however, this is not always the case.

Example 2.18. Consider the CNF formula

F = (a ∨ b)︸ ︷︷ ︸
=c1

∧
(

a ∨ d ∨ e
)

︸ ︷︷ ︸
=c2

∧
(

b ∨ c ∨ d
)

︸ ︷︷ ︸
=c3

∧
(

b ∨ d ∨ f
)

︸ ︷︷ ︸
=c4

∧
(

d ∨ f
)

︸ ︷︷ ︸
=c5

.

A possible implication graph associated with a conflict is shown in Figure 2.4. We have

causes of(⊥) = {b, c},
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Figure 2.3: Implication graph for Example 4.2.5 in Marques-Silva et al. (2021).
Redrawn from their Figure 4.2(a).

but this set does not constitute a conflict set. To see this, consider that any conflict partition (A, B)
of which {b, c} would be the conflict set would satisfy d ∈ B on account of c having an outgoing
edge to d only. Since no edges may leave B, it follows that e ∈ B. But then the conflict set would
have to contain a, too. ♢

The problem that this example highlights is that there may be vertices representing variables
whose values were assigned at the current decision level but that are not involved in the conflict.
To get around this problem, we restrict our attention to the subgraph that comprises just those
paths in the implication graph that terminate in ⊥. This requires some further definitions.

Definition 2.19. Let G = (V, E) be a directed acyclic graph. Then x ∈ V is a parent of y ∈ V if
and only if there exists an edge (x, y) in the edge set E. In this case, we also call y a child of x. We
call x ∈ V an ancestor of y ∈ V if and only if there exists a sequence (z0, z1), (z1, z2), . . . , (zn−1, zn)

in E with z0 = x and zn = y. In this case, we also call y a descendant of x. ♢

If I is an implication graph, then x is a parent of y if and only if the variable x ∈ A(y). Moreover, x
is an ancestor of y if and only if there exist vertices z0, . . . , zn ∈ VI such that x = z0 ∈ A(z1), z1 ∈
A(z2), . . . , zn−1 ∈ A(zn) with zn = y.

Definition 2.20. Let I = (VI , EI) be the implication graph associated with a conflict. We define
the restricted implication graph I′ = (VI′ , EI′) by setting

VI′ := {x ∈ VI : x is an ancestor of ⊥ in I} ∪ {⊥}

and
EI′ := {(a, b) ∈ EI : a, b ∈ VI′}. ♢
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Figure 2.4: The set causes of(⊥) is not a conflict set.

If (A′, B′) is a conflict partition of the restricted implication graph I′, then the value assignments
to the elements in its associated conflict set C′ already imply a conflict. The reason is that I′

consists of precisely those vertices that represent value assignments that directly or indirectly
gave rise to the conflict. We may hence apply the same reasoning as in the proof of Lemma 2.10
on page 10 to the restricted implication graph. It follows that any conflict-induced clause learnt
on the basis of the restricted implication graph I′ is an implicate of the CNF formula.

Lemma 2.21. Given an implication graph I associated with a conflict, the set causes of(⊥) represents
a conflict set of the restricted implication graph I′ = (VI′ , EI′).

Proof. Let x0 ∈ VI′ be the unique vertex with α(x0) = d, δ(x0) = δ(⊥). That is, x0 represents the
latest decision variable. Define the set

B′ := {x ∈ VI′ : x is a descendant of x0 in I′}.

It is clear that
B′ = {x ∈ VI′ : A(x) ̸= ∅, δ(x) = δ(⊥)},

i.e., B′ consists of all vertices at the latest decision level safe for the decision variable. So this
set does not contain any decision variables, but it does contain ⊥. Moreover, if a ∈ B′ and
(a, b) ∈ EI′ , then b is a descendant of a in I′. Since a is a descendant of x0, by transivity of the
descendant relation, b ∈ B′. Hence, (VI′ \ B′, B′) is a conflict partition of I′. The set

C′ := {y ∈ VI′ \ B′ : there exists an x ∈ B′ such that y is a parent of x}

contains exactly those vertices in VI′ \ B′ with an edge into B′, i.e., C′ is the conflict set associated
with the conflict partition (VI′ \ B′, B′). We now show that

causes of(⊥) = C′.

To this end, first assume that y ∈ causes of(⊥). Further assume towards a contradiction that
y ∈ B′. Then y is a descendant of x0 in I′. This means that there exists some sequence of vertices
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z0, . . . , zn in VI′ with

x0 = z0 ∈ Σ(z1), z1 ∈ Σ(z2), . . . , zi−1 ∈ Σ(zi), y = zi ∈ Σ(zi+1), . . . , zn−1 ∈ Σ(zn),

where zn = ⊥. By calling causes of(⊥), the definition of the causes of function guarantees
that we will eventually call causes of(y). Since y is situated at the highest decision level, y is not
part of the Λ set of any vertex. Moreover, since Σ(y) ̸= ∅, causes of(y) will result in a further
recursive call to causes of(). So there is no x ∈ B′ such that y ∈ causes of(x). Contradiction.
Hence y ∈ VI′ \ B′.

We continue to consider y ∈ causes of(⊥). Inspecting the recursion in the causes of function,
we see that there are only two ways in which y could have ended up in causes of(⊥). The first
is that the recursive calls to causes of() sketch out a sequence of vertices z0, . . . , zn in VI′ with

y = z0 ∈ Λ(z1), z1 ∈ Σ(z2), . . . , zn−1 ∈ Σ(zn),

where zn = ⊥. The second possibility is that the recursive calls to causes of sketch out a
sequence of vertices z0, . . . , zn in VI′ with

y = z0 ∈ Σ(z1), z1 ∈ Σ(z2), . . . , zn−1 ∈ Σ(zn),

where zn = ⊥ and with A(y) = ∅. In both cases, δ(z1) = δ(⊥), A(z1) ̸= ∅. So z1 ∈ B′ and
y ∈ C′. Hence causes of(⊥) ⊂ C′.

Now consider any y ∈ C′ ⊂ VI′ \ B′. Then y has at least one child x ∈ B′. This x is either ⊥ itself
or an ancestor of ⊥ with δ(x) = δ(⊥). So there exists some sequence of vertices z0, . . . , zn in VI′

with
y = z0 ∈ A(z1), z1 ∈ Σ(z2), . . . , zn−1 ∈ Σ(zn),

where zn = ⊥. The call causes of(⊥) eventually results in the call causes of(z1). Since
y ∈ A(z1), the recursion continues. If y ∈ Λ(z1), we obtain

causes of(⊥) ⊃ causes of(z1) ⊃ Λ(z1) ∋ y.

If y ∈ Σ(z1), we obtain

causes of(⊥) ⊃ causes of(z1) ⊃ causes of(y).

In the latter case, δ(y) = δ(⊥). So y /∈ B′ implies A(y) = ∅. So causes of(y) = {y}. Hence
C′ ⊂ causes of(⊥).

Lemma 2.10 implies that the clause learnt after applying causes of(⊥) is a conflict-induced
clause (but one based on the restricted rather than on the full implication graph) and that it
is hence an implicate of the CNF formula and may be added to it. Moreover, the conflict set
identified by causes of(⊥) has a useful property that arbitrary conflict sets do not necessarily
have: it will contain exactly one variable whose value was set at the current decision level,
namely the decision variable, alongside possibly some variables whose values were set at lower
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f ∨ g h ∨ e ∨ f

h ∨ e ∨ g

h ∨ e

c ∨ d ∨ h

a ∨ b ∨ h ∨ d

a ∨ b ∨ h

e ∨ g c ∨ d ∨ e a ∨ b ∨ c a ∨ d

Figure 2.5: Learnt clauses can be obtained via resolution steps.

decision levels. Lemma 2.13 implies that the conflict-induced clause constructed on the basis of
causes of(⊥) will be an implicate of F that is not yet contained in our CNF formula.

Remark 2.22. The clause learning algorithm discussed in this section implicitly works by
resolution. For instance, the clause cnew = h ∨ b ∨ a learnt in Example 2.17 on page 14 may be
obtained via the resolution steps shown in Figure 2.5. These steps trace out the recursive calls
to clauses of(). Since nothing in this thesis hinges on this remark, I do not prove that it holds
generally. ♢

2.3 Non-chronological backtracking

Once a conflict has been analysed and a new implicate has been added to the CNF formula, some
value assignments need to be reset so that the solver can explore an as yet uncharted part of the
search space. This step is referred to as backtracking. Intuitively, it would seem to make sense to
flip the value assignment of the last decision variable x which has not already been set to both
0 and 1 earlier and to set α(y) = u for all y ̸= x with δ(y) ≥ δ(x). This form of backtracking is
known as chronological backtracking and would work in the sense that the resulting overall SAT

solver would be sound and complete. However, following the lead of GRASP (e.g., Marques-Silva
& Sakallah, 1999), current SAT solvers implement a form of non-chronological backtracking.
This works as follows. Let d be the present decision level and let cnew be the implicate just
obtained by conflict analysis. Consider the set

D := {δ(ℓ) : ℓ ∈ cnew, δ(ℓ) < d}
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Global : A set of clauses representing a propositional formula F in CNF, to be updated
A set of 4-tuples ν representing a value assignment
The current decision level DLevel

Output: Highest decision level in the recorded clause that is still lower than the current
decision level

1 ConflictAnalysis()
2 new← CreateClause(causes of(⊥))
3 MaxDLevel← 0
4 if {ℓ ∈ new : δ(ℓ) < DLevel} ̸= ∅ then
5 MaxDLevel←max{δ(ℓ) : ℓ ∈ new, δ(ℓ) < DLevel}
6 F ← F ∪ {new}
7 return MaxDLevel

Algorithm 2.2: The conflict analysis routine.

and define

d̃ :=

0, if D = ∅,

max(D), else.

Now reset the value assignments, decision levels, and antecedents of all variables x with N ∋
δ(x) > d̃ and start another round of unit propagation with d̃ as the new decision level. The
newly added clause contains exactly one variable whose value has been reset to u, namely the
decision variable that led to the conflict. All other literals in the clause evaluate to 0. Hence, the
newly added clause is unit, and unit propagation can be applied to it, allowing the algorithm to
explore new branches of the search tree.

Example 2.23 (Non-chronological backtracking). Consider the propositional formula

F = (a ∨ b)︸ ︷︷ ︸
=c1

∧
(

b ∨ c ∨ d
)

︸ ︷︷ ︸
=c2

∧ (e ∨ f )︸ ︷︷ ︸
=c3

∧
(

d ∨ f ∨ g
)

︸ ︷︷ ︸
=c4

∧
(

f ∨ h
)

︸ ︷︷ ︸
=c5

∧
(

g ∨ h
)

︸ ︷︷ ︸
=c6

.

Picking the decision variables in lexicographical order and setting their values to 1 leads to a
conflict, see Figure 2.6. Conflict analysis yields the new clause (d ∨ f ), resulting in the extended
propositional formula

F̃ = (a ∨ b)︸ ︷︷ ︸
=c1

∧
(

b ∨ c ∨ d
)

︸ ︷︷ ︸
=c2

∧ (e ∨ f )︸ ︷︷ ︸
=c3

∧
(

d ∨ f ∨ g
)

︸ ︷︷ ︸
=c4

∧
(

f ∨ h
)

︸ ︷︷ ︸
=c5

∧
(

g ∨ h
)

︸ ︷︷ ︸
=c6

∧
(

d ∨ f
)

︸ ︷︷ ︸
=c7

.

The algorithm now backtracks to the new decision level δ(d) = 2, where c7 has become unit,
allowing it to find a satisfying assignment; see Figure 2.7. ♢

Algorithm 2.2 presents pseudocode for the conflict analysis and clause learning routine, including
the computation of the decision level the solver needs to backtrack to. The CreateClause()

helper function implements Equation 2.1 on page 13.
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Figure 2.6: Implication graph of a value assignment leading to a conflict, see
Example 2.23.
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Figure 2.7: Continuation of Example 2.23. After backtracking to level 2, a
satisfying assignment is found. Assignments effected after backtracking are
in blue.
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Global : A finite set of propositional variables V

Input: A propositional formula F in CNF
Output: Satisfiability of F

1 CDCL(F )
2 N← InitialiseAssignment()
3 DLevel← 0
4 if not UnitPropagation() then
5 return false

6 while not AllVariablesAssigned() do
7 DLevel← DLevel + 1
8 (var, val)← PickBranchVariable()
9 Assign(var, val, DLevel, d)

10 while not UnitPropagation() do
11 if DLevel == 0 then
12 return false

13 BLevel← ConflictAnalysis()
14 Backtrack(BLevel)
15 DLevel← BLevel

16 return true

Algorithm 2.3: The CDCL algorithm. From Marques-Silva et al. (2021, Algorithm 2, p. 141),
with adaptations.

2.4 Putting it all together

All ingredients for a basic CDCL-based SAT solver are now in place; Algorithm 2.3 provides the
pseudocode for the overarching algorithm. A few of the helper functions are not introduced in
pseudocode as their logic is quite straightforward. The helper function InitialiseAssignment()

identifies all variables in V and creates a set of tuples

{(x, u, u, n) : x ∈ V}.

As its name suggests, the helper function AllVariablesAssigned() merely checks if there are
any unassigned variables left in V. The Backtrack() function resets the value assignments,
decision levels, and antecedents of all variables whose decision level is above the input to
Backtrack() back to u, u, and n, respectively.

Before discussing why bare-bones CDCL-based SAT solvers tend to work more efficiently than
exhaustive search does, let’s make sure that it works at all. While a soundness and completeness
proof of an early CDCL-based SAT solver, GRASP, can be found in Marques-Silva & Sakallah
(1999), my treatment of CDCL-based SAT solving differs somewhat from theirs, so that I present
my own proofs.

Lemma 2.24. Algorithm 2.3 terminates.

Proof. LetF be a CNF formula that we feed into Algorithm 2.3. Define n := #var(F ). The formula
F has at most 3n disjunctions with only variables in var(F ) as implicates: if we construct a
new clause using the variables var(F ), we may for each variable x decide to leave it out of the
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clause, to include x, or to include x. When faced with a conflict with δ(⊥) = 0, the algorithm
immediately terminates (either on line 5 or on line 12). When faced with a conflict with δ(⊥) ≥ 1,
the ConflictAnalysis() routine creates a conflict-induced clause that contains exactly one
literal that was set at the current decision level and backtracks to the decision level at which this
clause becomes unit. By Lemma 2.13, this clause has not yet been learnt before. Hence, the loop
starting at line 10, during which a new implicate gets added to the CNF formula, will be executed
at most 3n times in total. Hence, the algorithm must terminate.

If the algorithm terminates, it either outputs true or false, and we may both inspect the current
extended CNF formula as well as the augmented value assignment N. Evidently, this termination
guarantee is purely theoretical as it assumes infinite resources. In real-life applications, the CNF

formula may become so large, and unit propagation may become so slow, that we may run out
of computer memory or patience. The same caveat applies to the following theorem.

Theorem 2.25. Algorithm 2.3 is sound and complete. That is, it outputs true if and only the CNF

formula is satisfiable, in which case the value assignment constructed is a model of this CNF formula;
moreover, it outputs false if and only if the CNF formula is unsatisfiable.

Proof. Assume CDCL(F ) outputs true. Then all variables in F have been assigned (line 6
in Algorithm 2.3). If the algorithm never entered the while-loop starting on line 6, then all
variables must have been assigned during unit propagation at decision level 0 (line 4), and the
UnitPropagation() routine must have returned true. Inspecting Algorithm 2.1, it is clear that
F ν ̸= 0. Since all variables have been assigned, it follows that F ν = 1.

If, on the other hand, the algorithm did enter the while-loop starting on line 6, it can only have
left it after UnitPropagation() on line 10 returned true. As before, this implies that F ν ̸= 0,
and hence F ν = 1. While it is possible that F has been extended with some of its implicates
along the way, any value assignment that satisfies the extended formula also satisfies the original
formula (Lemma 2.12). Hence, Algorithm 2.3 is sound, and the value assignment ν satisfies the
original CNF formula.

By Lemma 2.24, if CDCL(F ) does not output true, it must output false. If the algorithm returns
false at line 5, the formula F is clearly unsatisfiable: the UnitPropagation() routine will
only have identified necessary value assignments, but these already cause a conflict. If the
algorithm returns false on line 12, the algorithm must have backtracked to decision level 0
on line 14, during which process all value assignments by decision must have been erased.
The current propositional formula on which UnitPropagation() operates on line 12 will only
contain implicates of the original formula F . So by the same token, UnitPropagation() will
only have identified necessary value assignments, which already cause a conflict. Hence there
does not exist any value assignment that satisfies F and its implicates. Hence there does not
exist any value assignment that satisfies F .

2.5 CDCL vs brute-force search vs DPLL

Our bare-bones CDCL-based SAT-solving algorithm terminates and is both sound and complete.
But these are not particularly high bars to clear: a brute-force search among all 2n possible value
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assignments to the n variables occurring in the CNF formula also clears them. CDCL-based SAT

solvers tend to be more efficient than brute-force searches as unit propagation allows them to
identify necessary value assignments implied by previous value assignments. This way, they
do not need to potentially explore all branches of the search tree as a brute-force search would.
Consider, for instance, Example 2.23 on page 19. The CNF formula contains eight variables, so a
brute-force search would potentially have to consider 28 = 256 different value assignments. Any
algorithm relying on unit propagation, however, would immediately be able to exclude from its
search space the 26 = 64 value assignments that evaluate a to 1 but b to 0. Further branches of
the search tree are similarly summarily dismissed at higher decision levels.

The utility of unit propagation was already recognised by the predecessors of CDCL-based
algorithms, namely the DP algorithm (Davis & Putnam, 1960) and the computationally more
feasible DPLL algorithm it gave rise to (Davis et al., 1962, named after Davis, Putnam, Logemann,
and Loveland). The latter algorithm, like our CDCL-based solver, alternatingly applies unit
propagation and value assignment by decision. It does not, however, deduce implicates of the
input formula based on the conflicts it encounters. Instead, upon encountering a conflict, it
backtracks to the last decision variable and sets its value to the other value; if both values {0, 1}
have already been tried, the algorithm backtracks to the penultimate decision variable, and so
on. It outputs true if a satisfying assignment was found and false if both values have been
tried to no avail for all decision variables. I do not provide pseudocode for the DPLL algorithm
as this would require me to introduce new formalisms that will play no further role in this
thesis (for two different pseudocode representations, see Darwiche & Pipatsrisawat, 2021, and
Marques-Silva et al., 2021).

Example 2.26 (CDCL vs DPLL). Consider the following propositional formula:

F = (a ∨ b ∨ c)︸ ︷︷ ︸
=c1

∧
(

a ∨ b ∨ c ∨ d
)

︸ ︷︷ ︸
=c2

∧ (a ∨ c ∨ d)︸ ︷︷ ︸
=c3

∧ (a ∨ d ∨ e)︸ ︷︷ ︸
=c4

∧
(

a ∨ d ∨ e
)

︸ ︷︷ ︸
=c5

∧
(

a ∨ d ∨ e
)

︸ ︷︷ ︸
=c6

.

This formula is clearly satisfiable – we just need to set ν(α) = 0. But it is instructive to compare
how the DPLL and CDCL algorithms go about discovering this fact if they pick the decision
variables in lexicographical order and first assign to them the value 1.

The DPLL algorithm will first try out the value assignments ν(a) = ν(b) = ν(c) = 1, at which
point unit propagation can be applied. This yields ν(d) = 1 due to clause c3, which in turn results
in the conflict ν(e) = 1 (due to clause c5) versus ν(e) = 0 (due to clause c6). At this point, the
algorithm will reevaluate its latest guess and instead tries out the assignment ν(c) = 0, keeping
the assignments ν(a) = ν(b) = 1. Unit propagation now results in ν(d) = 1 (clause c2), which
again yields the same conflict in the variable e. Having tried out both assignments for the c
variable, the DPLL algorithm backtracks to the b variable. Setting ν(b) = 0 while only keeping
ν(a) = 1, unit propagation results in ν(c) = 1 (clause c1), and then once more ν(d) = 1 (clause
c3) and again the same conflict in the e variable. The algorithm now backtracks to the a variable,
sets its value assignment to 0, and obtains a model. Figure 2.8 displays the branches of the search
tree that the DPLL algorithm explores. Note that the DPLL algorithm backtracks chronologically,
i.e., to the latest decision variable that it has not yet fully considered.
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Figure 2.8: In Example 2.26, the DPLL algorithm first explores three branches
of the search tree, always resulting in the same conflict. Only then does it
reconsider to value assignment to the variable a, resulting in a satisfying
partial assignment.

The CDCL algorithm, by contrast, will deduce from conflict that the value assignments to a and c
cannot both be 1, see Figure 2.9. It adds the clause c7 = (a ∨ c) to the original formula and then
backtracks more aggressively, namely to δ(a) = 1. There, it immediately concludes that there
are no models that evaluate a to 1, see Figure 2.10. From this conflict, it would learn the clause
c8 = a. ♢

The combination of clause learning and non-chronological backtracking means that the CDCL

algorithm tends to prune the search tree more aggressively than does the DPDL algorithm. Indeed,
Knuth (2016) compared the performance of a couple of SAT-solving algorithms, including basic
DPLL and CDCL implementations, on one hundred test cases and concluded that

“it [the basic CDCL implementation, JV] is the clear method of choice in the vast
majority of our test cases, and we can expect it to be the major workhorse for most of
the satisfiability problems we encounter in daily work.” [p. 122]

2.6 On the limits of CDCL-based SAT solving

Knuth’s expectation testifies to the great successes that CDCL-based algorithms enjoy in real-life,
industrial applications. Their Achilles’ heel, however, are randomly-generated CNF formulas.1

1This is claimed in several publications (e.g., Ansótegui et al., 2019), and is reflected in the fact that CDCL-based
algorithms rarely rarely entered the ‘random’ tracks of previous SAT competitions (see https://satcompetition.

github.io/). I was unable to find useful data that backs up this claim, however.

https://satcompetition.github.io/
https://satcompetition.github.io/
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Figure 2.9: The CDCL algorithm encounters a conflict in Example 2.26 and
deduces from it the implicate (a ∨ c).
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Figure 2.10: Continuation of Example 2.26: The CDCL algorithm has learnt
that ν(a) = 1 must imply ν(c) = 0 for any model ν and backtracks to the
decision level of a. Value assignments made after backtracking to decision
level δ(a) = 1 are coloured blue.
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This suggests that CDCL-based SAT solvers implicitly capitalise on some properties typical of
industrial SAT problems, which random CNF formulas do not exhibit. Perhaps surprisingly, it is
still an open question what these properties are and how SAT solvers exploit them (Ganesh &
Vardi, 2021).

One popular suggestion is that the problem’s so-called community structure is one such property.
What is meant by this is this. For each CNF formula, a variable-incidence graph may be
constructed. This is an undirected weighted graph whose vertices are the formula’s variables.
The edges of this graph are drawn in a two-stage process. First, between each pair of variables
that occur in the same clause, an edge whose weight is inversely proportional to the width of
that clause is drawn. Then, all edges for each variable pair are coalesced and their weights
summed. The problem is now said to have a good community structure to the extent that
it is possible to partition the vertex set into clusters (‘communities’) in such a way that there
are edges predominantly within clusters and few edges between clusters, more so than for a
randomly constructed graph; see Definition 3 in Ansótegui et al. (2019) for a formal definition.
Empirically, industrial – but by definition not random – SAT instances tend to be characterised by
an excellent community structure (e.g., Ansótegui et al., 2019). Moreover, the time required to
solve industrial SAT problems has been shown to be inversely correlated to the quality of their
community structure (e.g., Newsham et al., 2014). That said, a solid theoretical explanation for
how CDCL-based SAT solvers exploit community structure has so far proved elusive (Ganesh
& Vardi, 2021), and, indeed, having good community structure does not necessarily make a
SAT instance easy to solve (Mull et al., 2016). Ganesh & Vardi (2021) discuss a few additional
proposals (also see Li et al., 2021; Zulkoski et al., 2018), but conclude that the questions as to
what makes industrial SAT instances much more amenable to CDCL-based solving than random
problems and why are as yet unanswered.



Chapter 3

Common tweaks

The previous chapter presented a no-frills conflict-driven clause learning SAT solver. Competitive
CDCL-based SAT solvers implement a host of further refinements to this basic algorithm, allowing
them to solve a range of real-life problem more efficiently (also see Fichte et al., 2020). As
a quick perusal of the descriptions of the solvers submitted to the yearly SAT competition
(see https://satcompetition.github.io/) will reveal, modern SAT solvers differ considerably
in the tweaks they implement, and it is not possible to treat all of these – or even the most
popular ones, for that matter – in detail. Some of these tweaks concern the computational
nitty-gritty, with a prime example being the introduction of the ‘watched literals’ data structure
in Chaff (Moskewicz et al., 2001) that reduces the number of memory accesses required in value
(re)assignments. For the present chapter, however, I have opted to focus on a handful of more
high-level conceptual tweaks to the basic CDCL algorithm. Specifically, I discuss in some detail
two commonly implemented techniques for deducing more useful implicates from conflicts. I
will also present in broad strokes three further ideas that are implemented in some form or other
in modern SAT solvers.

3.1 Learning more useful clauses

Other things equal, shorter implicates are more useful to SAT solvers than larger ones as they tend
to become unit earlier, allowing unit propagation to kick in more quickly. At the computational
level, moreover, shorter clauses simply take up less memory. Empirical investigations (e.g.,
Audemard & Simon, 2009), however, resulted in the more powerful indicator of clause quality
that is encapsulated in the following definition.

Definition 3.1. Let N be an augmented value assignment over V ⊃ var(F ) and let c be a clause
with variables in V such that δ(x) ̸= u for each variable x in c. Then the literal block distance
(LBD) of c is defined as

LBD(c) := #{δ(x) : x is a variable in c}. ♢

I did not find any formal justification for the LBD metric, but going by Audemard & Simon (2009),
the intuition behind this definition is as follows. If a SAT solver learns a new clause with a low
LBD value, then the variables in this clause are more intimately linked in the region of the search
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space that is currently being explored compared to clauses with high LBD values. As a result, the
clause is more likely to become unit earlier compared to a clause with a high LBD value.

Furthermore, learnt clauses tend to be more useful when they allow the solver to backtrack to
even lower decision levels. The reason for this is that the implied value assignments at lower
decision levels are conditional on fewer value assignments by decision. Hence, implied value
assignments at lower decision levels prune the search tree more aggressively than do implied
value assignments at higher decision levels.

So CDCL-based SAT solvers typically implement techniques resulting in clauses that tend to be
smaller, have lower LBD values, and allow for more aggressive backtracking than those obtained
by the algorithm presented in the previous chapter.

3.1.1 Unique implication points

Consider again the implication graph in Figure 2.3 on page 15. In the previous chapter, we saw
that from this implication graph, we would deduce the implicate a ∨ b ∨ h. However, the set
{e, h} also represents a conflict set, which results in the shorter implicate e ∨ h. Moreover, the
latter implicate allows us to backtrack to decision level 1 rather than only to decision level 2. The
lesson to be learnt from this example is that we do not have to backtraverse the implication graph
all the way back to the latest decision variable: if the value assignment to a different variable at
the current decision level, along with the value assignments at lower decision levels, already
implies a conflict, we can stop the traversal at this variable. The next few definitions and lemmas
spell out this idea, which was already present in the GRASP solver (Marques-Silva & Sakallah,
1996, 1999), more formally.

Definition 3.2. Let G = (VG, EG) be a directed graph with x, y ∈ VG. If there exists at least one
path starting at the vertex x and terminating at the vertex y and there exists a vertex z ̸= y such
that z lies on every such path, we say that z dominates x with respect to y. We also call z a
dominator of x with respect to y. ♢

Note that if a path exists between x and y, then x itself dominates x with respect to y.

Definition 3.3. Let I = (VI , EI) be the implication graph associated with a conflict. Let δ(⊥) ≥ 1
and let x ∈ VI be the sole vertex that satisfies δ(x) = δ(⊥), α(⊥) = d (that is, x represents the
decision variable that led to the conflict). Then we call any dominator of x with respect to ⊥
a unique implication point (UIP). Given an implication graph I associated with a conflict, we
denote the set of its unique implication points as UI . ♢

In this definition, we may disregard the case δ(⊥) = 0 as this would immediately cause the
solver to conclude that the CNF formula is unsatisfiable, obviating the need to learn further
implicates. Further note that if u is a unique implication point, then we cannot backtraverse
the implication graph starting at ⊥ to a node x with δ(x) = δ(⊥) that is not a descendant of u
without encountering u.

Our immediate goal is to generalise the causes of function defined on page 13 so that it stops
backtraversing the implication graph at any implication point of our choosing rather than just at
the current decision variable. To this end, let’s define an overloaded version of this function as
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follows:

causes of : VI′ × 2VI′ → 2VI′ ,

(x, S) 7→

{x}, if x ∈ S,

Λ(x) ∪
[⋃

y∈Σ(x) causes of(y, S)
]

, else.

Given a directed graph, finding the set of unique implication points is computationally easy
(see, for instance, Lengauer & Tarjan, 1979). We can now use this set as the second input to the
overloaded version of the causes of function. As shown in the next three lemmas, this enables
us to determine conflict sets that are no larger than the ones identified using the algorithm in the
previous chapter; in practice, these conflict sets will in fact often be smaller.

The first lemma we need generalises Lemma 2.21 on page 16.

Lemma 3.4. Let I be an implication graph associated with a conflict. Let UI be the set of its unique
implication points. Then the set causes of(⊥, {u}), u ∈ UI , represents a conflict set of the restricted
implication graph I′. Furthermore, this set contains exactly one vertex associated with a variable with the
same decision level as ⊥.

Proof. We adapt the proof of Lemma 2.21. Let u ∈ UI be an arbitrary unique implication point.
Define the set

B′ := {x ∈ VI′ : x is a descendant of u in I′}.

The partition (VI′ \ B′, B′) is a conflict partition of I′ for the same reason as in the proof of Lemma
2.21, substituting u for x0. Now we define

C′ := {y ∈ VI′ \ B′ : there exists an x ∈ B′ such that y is a parent of x}

and note that this is the conflict set associated with the conflict partition (VI′ \ B′, B′). We want
to show that

causes of(⊥, {u}) = C′.

To this end, first assume that y ∈ causes of(⊥, {u}) and further assume y ∈ B′. Again
substituting u for x0 in the proof of Lemma 2.21, we obtain a contradiction. Hence, y ∈ VI′ \ B′.

The recursive definition of the overloaded causes of function and the fact that u ∈ UI guarantee
that there are only two ways in which y could have ended up in causes of(⊥). The first is that
the recursive calls to causes of sketch out a sequence of vertices z0, . . . , zn in VI′ with

y = z0 ∈ Λ(z1), z1 ∈ Σ(z2), . . . , zn−1 ∈ Σ(zn),

where zn = ⊥. The second possibility is that the recursive calls to causes of sketch out a
sequence of vertices z0, . . . , zn in VI′ with

y = u = z0 ∈ Σ(z1), z1 ∈ Σ(z2), . . . , zn−1 ∈ Σ(zn),
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where zn = ⊥. In both cases, the vertices z1, . . . , zn all are descendants of u. To see this, consider
that zn = ⊥ is a descendant of u. In order to reach any non-descendant of u at the same decision
level starting at ⊥, we would have to backtraverse the implication graph at the same decision
level (i.e., following the Σ sets). Since u is a UIP, we would eventually end up at u. But calling
causes of(u, {u}) terminates the recursion. So {z1, . . . , zn} ⊂ B′. In particular, z1 ∈ B′ and
y ∈ C′. So causes of(⊥, {u}) ⊂ C′.

Now consider any y ∈ C′ ⊂ VI′ \ B′. Then y has at least one child x ∈ B′. This x is either ⊥
itself or an ancestor of ⊥ with δ(x) = δ(⊥) that is also a descendant of u. So there exists some
sequence of vertices z0, . . . , zn in VI′ with

y = z0 ∈ A(z1), z1 ∈ Σ(z2), . . . , zn−1 ∈ Σ(zn),

where zn = ⊥ and zi ̸= u for i = 1, . . . , n. The call causes of(⊥, {u}) eventually results in the
call causes of(z1, {u}). Since z1 ̸= u and Σ(z1) ̸= ∅, the recursion continues. If y ∈ Λ(z1), we
obtain

causes of(⊥, {u}) ⊃ causes of(z1, {u}) ⊃ Λ(z1) ∋ y.

If y ∈ Σ(z1), we obtain

causes of(⊥, {u}) ⊃ causes of(z1, {u}) ⊃ causes of(y, {u}).

In the latter case, δ(y) = δ(⊥). If y ̸= u, then y is itself a descendant of u: we can backtraverse
the implication graph at the same decision level starting at ⊥ without encountering u to reach y,
hence y cannot be a non-descendant. This contradict y ̸= B′. Hence, causes of(y, {u}) = {y}.
So C′ ⊂ causes of(⊥, {u}).

Lastly, note that u ∈ C′ = causes of(⊥, {u}). Since δ(u) = δ(⊥), there is at least one vertex in
causes of(⊥, {u}) associated with a variable with the same decision level as ⊥. Now let y ∈ C′

be a vertex with δ(y) = δ(⊥). Since y ∈ C′, y /∈ B′. Since u is a UIP, y is then either u or an
ancestor of u. If y were an ancestor of u, the recursive calls to causes of must have sketched out
a path that included the call causes of(u, {u}), which would have terminated the recursion. So
y is not an ancestor of u. Hence y = u. Hence, causes of(⊥, {u}) contains exactly one vertex
associated with a variable with the same decision level as ⊥.

As the next lemma shows, given the set of unique implication points, we can easily construct
the conflict set related to the first implication point as seen from the ⊥ vertex. This strategy is
referred to in the literature as the 1-UIP or First UIP scheme (e.g., Zhang et al., 2001), whereas the
scheme discussed in the previous chapter is referred to as the Last UIP or the RELSAT scheme.
(RELSAT was another clause-learning SAT solver; Bayardo & Schrag, 1997.)

Lemma 3.5 (1-UIP). Let I be an implication graph associated with a conflict. Let UI be the set of its
unique implication points. Then the set causes of(⊥, UI) represents a conflict set of the restricted
implication graph I′. Furthermore, this set contains exactly one vertex associated with a variable with the
same decision level as ⊥.
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Proof. Backtraversing the implication graph from the ⊥ vertex to the vertex representing the
decision variable x with δ(x) = δ(⊥), the first u ∈ UI encountered is well-defined by virtue of its
being a dominator of x with respect to ⊥. The recursive calls of the overloaded causes of(y, UI)

function stop when y ∈ UI , hence they already stop at y = u. Hence,

causes of(⊥, UI) = causes of(⊥, {u}).

By the previous lemma, causes of(⊥, UI) is a conflict set and contains exactly one variable at
the same decision level as ⊥, viz., u.

The 1-UIP strategy is optimal in the sense of the following two lemmas (also see Hamadi et al.,
2016).

Lemma 3.6 (Optimality w.r.t. clause width). Let I be an implication graph associated with a conflict.
Let UI be the set of its unique implication points. Then for all u ∈ UI , we have

#causes of(⊥, UI) ≤ #causes of(⊥, {u}). (∗)

In particular,
#causes of(⊥, UI) ≤ #causes of(⊥).

Proof. As shown in the proof of the previous lemma, the first UIP as seen from the ⊥ vertex is
well-defined; call it u0. We have already seen that

causes of(⊥, UI) = causes of(⊥, {u0}).

Pick any u ∈ UI . If u = u0, (∗) is trivial. If u ̸= u0, then u0 is a descendant of u in I′.
Hence, calling causes of(⊥, {u}) will eventually result in calling causes of(u0, {u}). Hence,
any x ∈ causes of(⊥, UI) with δ(x) < δ(⊥) also belongs to causes of(⊥, {u}). Since both
causes of(u0, {u}) and causes of(⊥, UI) contain exactly one variable at decision level δ(⊥),
(∗) follows.

Now let x ∈ VI′ be the decision variable with δ(x) = δ(⊥). Then x ∈ UI and so

#causes of(⊥, UI) ≤ #causes of(⊥, x) = #causes of(⊥).

Lemma 3.7 (Optimality w.r.t. LBD and backtracking level). Let I be an implication graph associated
with a conflict. Let UI be the set of its unique implication points and u ∈ UI . Define

D := {δ(x) : x ∈ causes of(⊥, {u}), δ(ℓ) < δ(⊥)},

D0 := {δ(x) : x ∈ causes of(⊥, UI), δ(ℓ) < δ(⊥)},
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as well as

d̃ :=

0, if D = ∅,

max(D), else,

d̃0 :=

0, if D0 = ∅,

max(D0), else.

Then #D0 ≤ #D and d̃0 ≤ d̃.

Proof. As before, denote the first UIP as seen from the ⊥ vertex by u0. From the proof of the
previous lemma, we obtain

causes of(⊥, UI) \ {u0} = causes of(⊥, {u0}) \ {u0} ⊂ causes of(⊥, {u}) \ {u}.

Hence, D0 ⊂ D. Hence, #D0 ≤ #D and d̃0 ≤ d̃.

In other words, the 1-UIP strategy enables us to learn shorter clauses with lower LBD values and
to backtrack more aggressively, i.e., to lower decision levels, compared to the Last UIP scheme.
The 1-UIP strategy can be accommodated by making a couple of minor changes to Algorithm 2.2
on page 19. Specifically, create the set UI by identifying the dominators of the decision variable
at the latest decision level with respect to⊥. Then run CreateClause(causes of(⊥, UI)) instead
of CreateClause(causes of(⊥)).

To my knowledge, current CDCL-based SAT solvers implement the 1-UIP learning scheme.
However, GRASP learnt new implicates at each UIP. A possible pseudocode representation
is provided in Algorithm 3.1. The idea is this. We first learn a new implicate using the 1-UIP

scheme and jot down the first UIP u encountered. If u was not the only UIP, we use the causes of

function to figure out the root causes for our value assignment to u and encode this knowledge in
a new clause. Since the value assignment to u must have been obtained through unit propagation,
this new clause is also an implicate of the original CNF formula. We then learn the root causes for
our value assignment to the second UIP, and so on, until we arrive at the decision variable at the
current decision level.

Example 3.8. Based on the implication graph in Figure 2.3 on page 15, Algorithm 3.1 would learn
the implicates c7 = (e ∨ h) (at the first implication point) and c8 = (a ∨ b ∨ e). The latter clause
encodes the insight that can be gleaned from the implication graph that ν(a) = ν(b) = 1 implies
ν(e) = 1 for any model ν. ♢

It seems that the motivation for learning implicates at multiple UIPs in GRASP was to simply
learn as much as possible from any conflict and thereby close off more unproductive branches of
the search tree than the 1-UIP scheme would. Empirical results show that it succeeds in doing
so, but that the 1-UIP scheme nonetheless has shorter runtimes. While learning the additional
clauses incurs some minor overhead, the main problem with multiple clause learning seems to
be that the increase in clauses slows down the unit propagation routine (Zhang et al., 2001).1

1Marques-Silva & Malik (2018) and Marques-Silva et al. (2021) cite a poster presentation by Sabharwal et al. (2012)
as showing “promising results” in favour of multiple clause learning. But Sabharwal et al. (2012) did not compare
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Global : A set of clauses representing a propositional formula F in CNF, to be updated
A set of 4-tuples N representing a value assignment
Current decision level DLevel

Output: Highest decision level in the recorded clause that is still lower than the current
decision level

1 ConflictAnalysis()
2 UI ← FindUIPs(N)
3 c← causes of(⊥, UI)
4 new← CreateClause(c)
5 MaxDLevel← 0
6 if {ℓ ∈ new : δ(ℓ) < DLevel} ̸= ∅ then
7 MaxDLevel←max{δ(ℓ) : ℓ ∈ new, δ(ℓ) < DLevel}
8 F ← F ∪ {new}
9 u← only variable in new with decision level DLevel

10 UI ← UI \ {u}
11 while UI ̸= ∅ do
12 c← causes of(u, UI)
13 new← CreateClause(c) ∪ {u1−ν(u)}
14 F ← F ∪ {new}
15 u← only variable in c with decision level DLevel
16 UI ← UI \ {u}
17 return MaxDLevel

Algorithm 3.1: Learning implicates at each UIP. For the definition of u1−ν(u), see Equation
2.1 on page 13.

3.1.2 Learnt clause minimisation

Even when conflict-induced clauses are learnt using the 1-UIP scheme, it is often possible to
reduce (or ‘strengthen’) the learnt clause to a proper subset of it that already prevents the same
conflict from being reached. A first strategy used to identify superfluous literals in a learnt clause
is known as local minimisation and is based on the principle of self-subsuming resolution
(see, for instance, Marques-Silva & Malik, 2018): Let c1 ⊂ c2 be sets of literals over var(F ). If the
newly learnt clause has the form {ℓ} ∪ c2 and there exists a clause in F of the form {¬ℓ} ∪ c1,
then resolving both clauses on ℓ yields the clause c1 ∪ c2 = c2. Hence, we may drop the literal ℓ
from the newly learnt clause. Algorithm 3.2 outlines the resulting procedure.

Example 3.9 (Local minimisation). Marques-Silva & Malik (2018) present the following example
of local clause minimisation. Consider the CNF formula

F = (x ∨ b)︸ ︷︷ ︸
=c1

∧ (z ∨ b ∨ c)︸ ︷︷ ︸
=c2

∧ (x ∨ y ∨ z ∨ a)︸ ︷︷ ︸
=c3

∧ (a ∨ c)︸ ︷︷ ︸
=c4

.

and the implication graph in Figure 3.1 it could give rise to. The clause learnt after conflict
analysis without minimisation is x ∨ y ∨ z ∨ b. Resolving this clause on b with α(b) = α(b) =
c2 = x ∨ b yields x ∨ y ∨ z, allowing us to strengthen the learnt clause by one literal. ♢

the GRASP scheme to the 1-UIP scheme. Rather, from what I was able to make out from their abstract, it seems that
they compared the GRASP scheme to a multiple clause learning scheme in which new implicates were generated on
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Global : A set of clauses representing a propositional formula F in CNF
A set of 4-tuples N representing a value assignment

Input: A learnt clause new
1 LocalMinimisation(new)
2 for ℓ ∈ new with α(ℓ) ̸= d do
3 if α(ℓ) \ {¬ℓ} ⊂ new \ {ℓ} then
4 new← new \ {ℓ}

5 return new

Algorithm 3.2: Strengthening learnt clauses using local minimisation. Note that the way
we defined antecedents of literals means that α(ℓ) = α(¬ℓ).

0 ∅

1 x b
c1

2 y

3 z c

a

⊥

c3c3

c3

c2

c2

c4

c4

Level Decision Unit propagation

Figure 3.1: Implication graph of a value assignment leading to a conflict, see
Example 3.9.
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Global : A set of clauses representing a propositional formula F in CNF
A set of 4-tuples N representing a value assignment

Input: A learnt clause new
1 RecursiveMinimisation(new)
2 for ℓ ∈ new with α(ℓ) ̸= d do
3 if trace(ℓ, new \ {ℓ}) ⊂ new then
4 new← new \ {ℓ}

5 return new

Algorithm 3.3: Strengthening learnt clauses using recursive minimisation.

Modern SAT solvers implement a more powerful strategy for eliminating superfluous literals
from learnt clauses called recursive minimisation. Sörensson & Biere (2009) describe recursive
minimisation as follows:

“Generate the 1-UIP clause. Mark its literals. Implied variables in 1-UIP clause are
candidates for removal. Search implication graph. Start from antecedent literals of
candidate. Stop at marked literals or decisions. If search always ends at marked
literals then the candidate can be removed.”

Since it was not immediately clear to me what they meant by this nor why it works, I have
attempted to spell out the logic behind this strategy more explicitly based on their examples as
well as those in Marques-Silva & Malik (2018) and Marques-Silva et al. (2021). Let L be the set of
literals over V supplemented with ⊥. We define the recursive function

L× 2L → 2L,

trace(ℓ, S) 7→


{ℓ}, if ℓ ∈ S,

{⊥}, if ℓ /∈ S, α(ℓ) = d,⋃
ℓ′∈α(ℓ)\{ℓ,¬ℓ} trace(ℓ

′, S), otherwise.

If α(ℓ) = u, we consider α(ℓ) \ {ℓ,¬ℓ} to be the empty set; in practice, we will apply trace() to
literals occurring in the implication graph, and so this this latter case will not occur. Using this
function, we define Algorithm 3.3. Note that if there exists a literal ℓ with α(ℓ) ̸= δ in a learnt
clause c such that

α(ℓ) \ {¬ℓ} ⊂ c \ {ℓ},

then Algorithm 3.3 will eliminate this literal from c. (The way conflict-induced clauses are
constructed, ℓ ∈ c with α(ℓ) ̸= d implies that ¬ℓ ∈ α(ℓ).) Hence, recursive minimisation is
stronger than local minimisation. Before proving that recursive minimisation produces useful
learnt clauses in the sense of Lemma 2.13, let’s look at an example.

the basis of causes of(⊥, {u}) for each u ∈ UI . In the example shown in Figure 2.3, this would result in the implicates
c7 = (e ∨ h) and c8 = (a ∨ b ∨ h).
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Example 3.10 (Recursive minimisation). Sörensson & Biere (2009) present the following example.
Consider the CNF formula

F = a︸︷︷︸
=c1

∧ b︸︷︷︸
=c2

∧ (a ∨ c ∨ d)︸ ︷︷ ︸
=c3

∧ (b ∨ d ∨ e)︸ ︷︷ ︸
=c4

∧

(d ∨ f ∨ g)︸ ︷︷ ︸
=c5

∧ (e ∨ g ∨ h)︸ ︷︷ ︸
=c6

∧ (h ∨ i)︸ ︷︷ ︸
=c7

∧ (k ∨ ℓ)︸ ︷︷ ︸
=c8

∧

(ℓ ∨ r ∨ s)︸ ︷︷ ︸
=c9

∧ (d ∨ g ∨ s ∨ t)︸ ︷︷ ︸
=c10

∧ (s ∨ x)︸ ︷︷ ︸
=c11

∧ (x ∨ z)︸ ︷︷ ︸
=c12

∧

(h ∨ i ∨ t ∨ y)︸ ︷︷ ︸
=c13

∧ (y ∨ z)︸ ︷︷ ︸
=c14

.

Figure 3.2 shows a possible implication graph with a conflict node. If we used the 1-UIP strategy
without minimisation, we would obtain the learnt clause cnew = d ∨ g ∨ h ∨ i ∨ s. If we applied
local minimisation, we would be able to remove i from this clause, since α(i) \ {i} = {h} ⊂ cnew.
Using recursive minimisation, we would observe that

trace(i, {d, g, h, s}) = trace(h, {d, g, h, s}) = {h} ⊂ cnew,

so we can remove the literal i from cnew. We would further observe that

trace(h, {d, g, s}) = trace(g, {d, g, s}) ∪ trace(e, {d, g, s})

= {g} ∪ trace(d, {d, g, s}) ∪ trace(b, {d, g, s})

= {d, g} ∪∅

⊂ cnew \ {i}.

since α(b) \ {b} = ∅. So we would also remove h from the learnt clause. No further reductions
can be achieved using recursive minimisation since

trace(d, {g, s}) = trace(a, {g, s}) ∪ trace(c, {g, s}) = {c} ̸⊂ cnew

and
trace(g, {d, s}) = trace( f , {d, s}) ∪ trace(d, {d, s}) = {d, f } ̸⊂ cnew. ♢

Lemma 3.11 (Recursive minimisation). Let F be a CNF formula and let c be a conflict-induced
implicate of F under the augmented value assignment N. Let ℓ ∈ c be a literal with α(ℓ) ̸= d such that
trace(ℓ, c \ {ℓ}) ⊂ c. Then c \ {ℓ} is also an implicate of F .

Proof. Consider the recursion tree defined by the initial call trace(ℓ, c \ {ℓ}). The nodes of this
tree are labelled with subsets of L in the following way. First, the root node is labelled {ℓ}. Next,
given a node labelled {ℓ′} ⊂ L \ {⊥} in the recursion tree, its children are labelled as follows.

• If trace(ℓ′, c \ {ℓ}) = {ℓ′}, then {ℓ′} does not have any children, i.e., the node is a leaf.

• If trace(ℓ′, c \ {ℓ}) = ∅, then it has exactly one child, which is labelled ∅. This child is a
leaf.
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Figure 3.2: Implication graph of a value assignment leading to a conflict, see
Example 3.10.

• If trace(ℓ′, c \ {ℓ}) = {⊥}, then it has exactly one child, which is labelled {⊥}. This child
is a leaf. Note that under the hypothesis that trace(ℓ, c \ {ℓ}) ⊂ c, no leaves are labelled
{⊥}.

• Otherwise, the node has as many children as there are literals in α(ℓ′) \ {¬ℓ′}, with the
singleton sets containing these literals being their respective labels. To see why we only
need to remove ¬ℓ′ from α(ℓ′) and not ℓ′, consider the following. As mentioned above, for
ℓ ∈ c with α(ℓ) ̸= d, we have ¬ℓ ∈ α(ℓ). Moreover, because of the unit clause rule, for any
ℓ′ ∈ α(ℓ) \ {¬ℓ} with α(ℓ′) ̸= d, we have (ℓ′)ν = 0 under the current value assignment ν.
Hence, ¬ℓ′ ∈ α(ℓ′). Inductively, the claim follows.

Further note that different nodes may be labelled with the same subset of L, but that subtrees
with the same root label all look the same.

For a subtree with a node labelled {ℓ′} as its root, define descendants(ℓ′, k) to be the union over
the leaf labels in that subtree at a tree depth of at most k as well as over the node labels in that
subtree at a tree depth of exactly k. Note that

descendants(ℓ, kmax) = trace(ℓ, c \ {ℓ}),

where kmax is the depth of the full tree. We now show the following claim by induction on k ≥ 0:
Any model ν of F that satisfies (ℓ̃)ν = 0 for each ℓ̃ ∈ descendants(ℓ, k) also satisfies ℓν = 0.

For k = 0, descendants(ℓ, k) = {ℓ}, and the claim holds.
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For k ≥ 1, consider a non-leaf node labelled ℓ′ at depth k− 1. We distinguish two cases. First, if
descendants(ℓ′, 1) = ∅, then α(ℓ′) = {¬ℓ′}. Hence any model ν of F satisfies (¬ℓ′)ν = 1, that is,
(ℓ′)ν = 0. Second, if descendants(ℓ′, 1) = α(ℓ′) \ {¬ℓ′}, then any model ν that satisfies (ℓ̃)ν = 0
for all ℓ̃ ∈ descendants(ℓ′, 1) also satisfies (¬ℓ′)ν = 1 by the unit clause rule. Hence, in both
cases, we have (ℓ′)ν = 0. We can now apply the induction hypothesis to descendants(ℓ, k− 1),
which yields the claim.

Returning to the claim of the lemma itself, we know that c is an implicate of F . By contraposing
the claim just shown, any model ν of F with ℓν = 1 also satisfies (ℓ′)ν = 1 for at least one
ℓ′ ∈ trace(ℓ, c \ {ℓ}) ⊂ c \ {ℓ}. Hence, the model ν already satisfies (c \ {ℓ})ν = 1.

Finally, note that if a newly learnt clause c contains exactly one literal ℓ at the current decision
level, then {⊥} ∈ trace(ℓ, c \ {ℓ}). Hence, this literal will not be deleted from the learnt clause.
As a result, recursive minimisation produces useful clauses in the sense of Lemma 2.13 on
page 12.

3.2 Better value assignments by decision

Up till now, we only assumed that the PickBranchVariable() function selected some as yet
unassigned variable and assigned it some value in {0, 1}. For the examples, these variables
were chosen in lexicographical order and they were always assigned the value 1. An alternative
branching heuristic would be to randomly pick each decision variable from the set of unassigned
variables and to randomly assign to it a value in {0, 1}. Particularly in the earlier SAT solvers,
sundry heuristics were used that were more greedy in the sense that they gave precedence
to value assignments that immediately satisfied the largest number of clauses or that brought
the largest number of clauses a step closer to becoming unit. For a description and empirical
comparison of some of these heuristics, I refer to Marques-Silva (1999).

The watershed in the development of branching heuristics was the introduction of the Variable
State Independent Decaying Sum (VSIDS) strategy by Moskewicz et al. (2001). The original VSIDS

heuristic works as follows. For each x ∈ V, we maintain the counters s(x) and s(x), which are
both initialised to 0. We further pick an α ∈ (0, 1), referred to as the decaying factor, and an
interval size i ∈N≥1. When a conflict-induced clause c is learnt, we increment s(ℓ) by 1 for each
ℓ ∈ c; this logic can be implemented in the CreateClause() helper function. When choosing the
next decision variable, PickBranchVariable() returns a variable var satisfying

var ∈ arg max
y∈V:ν(y)=u

max{s(y), s(y)}.

If several variables satisfy this condition, one may be picked at random from them. This variable
is then assigned the value 1 if s(var) > s(var) and the value 0 if s(var) < s(var). Otherwise,
a value may be picked at random. After every i conflicts, we multiply all counters by α. As
Moskewicz et al. (2001) explain, the motivating idea behind this heuristic is to prioritise satisfying
recently learnt clauses.

The VSIDS strategy compared so favourably to its predecessors that some variation of it was
implemented in most competitive SAT solvers. These variations dispensed with the idea of
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maintaining counters for literals, instead keeping counters for variables only. This turned the
algorithm into a decision variable strategy, with the task of assigning a value to the selected
decision variable being delegated to a different algorithm (e.g., Jeroslow & Wang, 1990; Pipatsri-
sawat & Darwiche, 2007). For a discussion and empirical comparison of some variations on the
basic idea of the original VSIDS strategy, see Biere & Fröhlich (2015).

However, it is still not entirely clear why VSIDS-based variable selection heuristics perform well
in practice. An empirical study by Liang et al. (2015) suggests that VSIDS’ success is related to
the community structure often exhibited by SAT problems in practice (see Section 2.6 on page 24
on the notion of community structure). More specifically, VSIDS seems to favour variables that
represent bridges between different communities of variables. Once values have been assigned
to the bridges between two communities, these two communities become less directly dependent
of one another, which may help the solver to take some kind of divide-and-conquer approach.

3.3 Forgetting learnt clauses

CDCL-based SAT solvers often learn an enormous amount of clauses, which both poses challenges
in terms of memory management and slows down unit propagation (also see Krüger et al., 2022).
Modern SAT solvers therefore regularly prune the set of learnt clauses by deleting learnt clauses
that, according to some heuristic, are predicted to be of little further use to the solver. In order
to remain complete, the solver needs to become ever less picky in terms of how many clauses
it retains (see the termination lemma on page 21). To give an example, Audemard & Simon
(2009) introduced the following heuristic. First, each time a clause is learnt, record its literal block
distance (see Definition 3.1). After 20,000 conflicts (i.e., after 20,000 learnt clauses), delete the
50% of learnt clauses with the highest recorded literal block distances, but keep the most recently
learnt clause. Repeat the action after every 500 conflicts.

3.4 Restarting

The final tweak I wanted to touch on are the restart policies that are commonly implemented in
modern CDCL-based SAT solvers. These policies involve frequent backtracking to decision level 0,
though solvers differ substantially in terms of when they restart. For an overview and empirical
evaluation of different restart policies, I refer to Biere & Fröhlich (2019). According to Liang et al.
(2018), it is not clear how restarts improve the solvers’ performance, but their empirical evidence
suggests that frequent restarts result in higher-quality learnt clauses, i.e., clauses with lower
literal block distances. A key challenge facing solver engineers is to balance this advantage of
frequent restarts against the computational overhead that restarting incurs.
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Chapter 4

Application to classical planning

A commonly cited application of CDCL-based SAT solvers is solving classical planning problems
(e.g., Fichte et al., 2023; Marques-Silva et al., 2021). Put simply, classical planning problems
encode move-based games with well-defined, deterministic rules, starting positions, and desired
final positions, and ask whether there exists a finite sequence of allowed moves that get us
from the starting position to the desired position. In this chapter, I discuss the nuts and bolts
of classical planning – a full-blown introduction would lead us down a few rabbit holes – and
how classical planning problems can be solved using SAT solvers. I also present two concrete
examples that illustrate the basic principles of encoding planning problems as SAT problems.
For more advanced topics related to using SAT solvers for tackling planning problems, I refer to
Rintanen (2012, 2021).

4.1 Basics of classical planning

Two somewhat different compact formalisations of classical planning can be found in Rintanen
(2012) and Rintanen (2021). I found the formalisation in the earlier publication easier to reconcile
with my treatment of CDCL-based SAT solvers, so the following definitions are largely based on
Rintanen (2012), though still with some modifications.

Definition 4.1 (Classical planning problems). Propositional variables are referred to as state
variables. Finite sets of state variables are denoted by upper-case Latin letters; in the following,
X will denote a generic finite set of state variables.

A state s : X → {0, 1, u} is a valuation of X. If s(X) ⊂ {0, 1}, we call s a complete state; if
u ∈ s(X), we call s a partial state. It is convenient to represent states as sets of literals over X,
that is, as

S = {x : s(x) = 1} ∪ {x : s(x) = 0}.

41
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As another matter of convenience, we allow ourselves to write s(ℓ), where ℓ ∈ {x, x} is a literal
over X. By this notation, we mean

s(ℓ) =


u, if s(x) = u,

s(x), if s(x) ∈ {0, 1}, ℓ = x,

1− s(x), if s(x) ∈ {0, 1}, ℓ = x.

An action is a pair ⟨p, e⟩ such that p and e are consistent sets of literals over X. More precisely,
ℓ ∈ p implies both that ℓ ∈ {x, x} for some x ∈ X and that ¬ℓ /∈ p, and mutatis mutandis for e.
The set p is called the precondition of a, whereas e is called the effects of a.

An action a = ⟨p, e⟩ is called executable in a state s if s |= ℓ for each ℓ ∈ p. If an action a = ⟨p, e⟩
is executable in s, we define the successor state execa(s) : X → {0, 1} of s after executing a
through

execa(s)(x) :=


1, if x ∈ e,

0, if x ∈ e,

s(x), else.

Since execa(s) is a state, we may represent it as a set of literals, like before.

A problem instance π = ⟨X, I, A, G⟩ consists of a finite set X of state variables, a complete state
I : X → {0, 1} called the initial state, a set A of actions, and another, possibly partial, state
G : X → {0, 1} called the goal. ♢

Given a problem instance π = ⟨X, I, A, G⟩, the classical planning problem asks if there exists a
finite sequence (a1, . . . , an) ⊂ A such that

execan ◦ · · · ◦ execa1(I) ⊃ G.

What this boils down to is that we want to know if there is a finite sequence of allowed moves
(‘executable actions’) via which we can reach the goal starting from the initial state. If such a
sequence exists, we call it a plan.

By adopting the definitions above, I have restricted the scope of this chapter to sequential plans,
i.e., plans in which actions are executed one at a time. These contrast with parallel plans, in
which several actions may be executed simultaneously – for instance, as when simultaneously
sending one lorry from Basel to Härkingen and another one from Härkingen to Lucerne.

Intuition suggests that we may break down long plans into shorter ones by setting intermediate
goals and that we may stitch these shorter plans back together. By the following two lemmas,
which we will need shortly, this is indeed the case.

Lemma 4.2. Let π = ⟨X, I, A, G⟩ be a problem instance with a plan (a1, . . . , an), n ≥ 2. For any
k ∈ {1, . . . , n− 1}, define

Sk+1 := execak ◦ · · · ◦ execa1(I).
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Then π1 := ⟨X, I, A, Sk+1⟩ and π2 := ⟨X, Sk+1, A, G⟩ are problem instances with plans (a1, . . . , ak)

and (ak+1, . . . , an), respectively.

Proof. Successor states of complete states are themselves complete states, so Sk+1 is a valid initial
state. Hence, π1, π2 are valid problem instances. It is clear that (a1, . . . , ak) is a plan for π1. Since
(a1, . . . , an) is a plan for π, we have

execan ◦ . . . execak+1

execak ◦ · · · ◦ execa1(I)︸ ︷︷ ︸
=Sk+1

 ⊃ G,

so (ak+1, . . . , an) is a plan for π2.

Lemma 4.3. Let π1 = ⟨X, I, A, G1⟩, with G1 a complete state, be a problem instance with a plan
(a1, . . . , an) and let π2 = ⟨X, G1, A, G2⟩ be a problem instance with a plan (ã1, . . . , ãñ). Then the
problem instance π = ⟨X, I, A, G2⟩ has a plan (a1, . . . , an, ã1, . . . , ãñ).

Proof. Since (a1, . . . , an) is a plan for π1, we have execan ◦ · · · ◦ execa1(I) ⊃ G1. Since G1 is a
complete state, we even have execan ◦ · · · ◦ execa1(I) = G1. Since (ã1, . . . , ãñ) is plan for getting
from G1 to G2, it follows that

execãñ
◦ · · · ◦ execã1̃

(execan ◦ · · · ◦ execa1(I)) = execãñ
◦ · · · ◦ execã1̃

(G1) ⊃ G2.

4.2 Conversion to SAT

Kautz & Selman (1992) proposed a general scheme for converting classical planning problems
to SAT problems. The idea is this. First, we specify the number t ≥ 1 of actions the plan must
contain. Then, we express the initial state, goal, and actions using propositional variables and
encode their interrelations in CNF form, as detailed below. We submit this CNF formula to a SAT

solver. If the formula is satisfiable, we read out a model and derive a plan of length t from it; as
we will see in the examples, this is trivial. If the formula is not satisfiable, we pick another value
for t and start again.

Since classical planning is PSPACE-complete and SAT is NP-complete, it is still an open question
whether classical planning can efficiently be reduced to SAT. Kautz and Selman’s proposal
sidesteps this issue by reformulating planning problems as bounded planning problems and then
trying out different bounds. If there does not exist any t ≥ 1 such that the CNF formula fed to the
SAT solver is satisfiable, the search for a plan would in principle go on indefinitely.

Let π = ⟨X, I, A, G⟩ be a problem instance and let t ≥ 1 be the desired plan length. We convert
π to a propositional formula F as follows. First, we define the appropriate set of propositional
variables:

V := {x@i : x ∈ X, i ∈ {1, . . . , t + 1}} ∪ {a@i : a ∈ A, i ∈ {1, . . . , t}} .

That is, for each state variable, we create a propositional variable that encodes the state of this
state variable before the first action (x@1) and after each action (x@2, . . . , x@(t + 1)). We similarly
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associate each action with a propositional variable at each time point, indicating whether the
action was executed at this time point. I call the suffix following the @ the time index of the
propositional variable. In the following, ℓ@i is to be understood as x@i if ℓ = x and as x@i if
ℓ = x.

Second, we create sets of clauses that encode the initial state and the goal, namely

I :=
⋃
ℓ∈I

{{ℓ@1}}

and
G :=

⋃
ℓ∈G

{{ℓ@(t + 1)}}.

Third, we require that actions can only be executed if their preconditions hold. To this end, we
include in the propositional formula the clause

a@i→
∧
ℓ∈p

ℓ@i

for each a = ⟨p, e⟩ ∈ A and for each i = 1, . . . , t. We encode this as

P :=
⋃

i∈{1,...,t}

⋃
a=⟨p,e⟩∈A

⋃
ℓ∈p

{{a@i, ℓ@i}}.

Fourth, executing an action causes its effects. To this end, we include in the propositional formula
the clause

a@i→
∧
ℓ∈e

ℓ@(i + 1)

for each a = ⟨p, e⟩ ∈ A and for each i = 1, . . . , t. This is similarly encoded as

E :=
⋃

i∈{1,...,t}

⋃
a=⟨p,e⟩∈A

⋃
ℓ∈e

{{a@i, ℓ@(i + 1)}}.

In other words, actions imply both their preconditions and their effects.

Fifth, we require that changes in the state only come about through relevant actions. In other
words, if the state of x flips from 0 to 1 at some juncture, then some action a = ⟨p, e⟩ with x ∈ e
must just have been executed. To this end, we include in the propositional formula the clause

x@i ∧ x@(i + 1)→
∨
{a@i : a = ⟨p, e⟩ ∈ A, x ∈ e}

for each x ∈ X and for each i = 1, . . . ,t. We write this as

C01 :=
⋃

i∈{1,...,t}

⋃
x∈X

{
{x@i, x@(i + 1)} ∪ {a@i : a = ⟨p, e⟩ ∈ A, x ∈ e}

}
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By the same token, if the state of x flips from 1 to 0, then an action a = ⟨p, e⟩ with x ∈ e must just
have been executed:

C10 :=
⋃

i∈{1,...,t}

⋃
x∈X

{
{x@i, x@(i + 1)} ∪ {a@i : a = ⟨p, e⟩ ∈ A, x ∈ e}

}

Sixth, we encode that some action occurs at each time:

S :=
⋃

i∈{1,...,t}
{{a@i : a ∈ A}} .

Seventh, and finally, we assert that at most one action occurs at each time. To this end, we include
in the propositional formula the clause

a@i→ b@i

for each a, b ∈ A with a ̸= b and for each i = 1, . . . , t. We write this as

O :=
⋃

i∈{1,...,t}

⋃
a∈A

⋃
b∈A\{a}

{
{a@i, b@i}

}
.

The CNF formula submitted to the SAT solver is the conjunction of all these CNF formulas:

F := I ∧ G ∧ P ∧ E ∧ C01 ∧ C10 ∧ S ∧O.

The construction of this CNF formula is justified by the following theorem.

Theorem 4.4. Let π = ⟨X, I, A, G⟩ be a problem instance, let t ≥ 1, and let F be the CNF formula
derived from π by the process outlined above. Then there exists a plan (a1, . . . , at) for π if and only if
there exists a model ν of F such that ν(ai@i) = 1 for i = 1, . . . , t.

Proof. First, assume that t = 1 and that (a1) = (⟨p1, e1⟩) is a plan for getting from I to G. Then
execa1(I) ⊃ G, which means that two sets of conditions are fulfilled:

1. p1 ⊂ I,

2. G ⊂ e1 ∪ {ℓ ∈ I : ℓ /∈ e1,¬ℓ /∈ e1}.

We construct a model ν of F by specifying the value assignments to disjoint sets of literals as
follows.

1. For all ℓ ∈ I, set ℓ@1ν = 1. This immediately satisfies I .

2. Set ν(a1@1) = 1 and ν(aj@1) = 0 for all aj ∈ A with aj ̸= a1. This immediately satisfies
both S and O. Further, since p1 ⊂ I, all clauses in P are now satisfied as well.

3. For all ℓ ∈ e1, set ℓ@2ν = 1. Now, all clauses in E are satisfied.
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4. For all x ∈ X with {x, x} ∩ e1 = ∅, set ν(x@2) = ν(x@1). Now, both C01 and C10 are
satisfied. Further, since G is a subset of the union of the disjoint sets e1 and {ℓ ∈ I : ℓ /∈
e1,¬ℓ /∈ e1}, all clauses in G are satisfied, too.

Hence, all constituent formulas of F are satisfied, so ν is a model of F .

Now assume that t ≥ 2 and that (a1, . . . , at) = (⟨p1, e1⟩, . . . , ⟨pt, et⟩). Use Lemma 4.3 to define
problem instances π1 := ⟨X, I, A, St⟩ and π2 := ⟨X, St, A, G⟩ that have plans (a1, . . . , at−1) and
(at), respectively. By the induction hypothesis, the CNF formulas F1 and F2 corresponding to
these problem instances for desired plan lengths t− 1 and 1, respectively, are satisfiable. We can
rename the propositional variables occurring in F2 by starting the time-indexing at t instead
of 1. Let ν1, ν2 be models of F1 and F2, respectively. It is clear that all propositional variables
occurring in F occur in F1 or F2. The only propositional variables occurring in both F1 and F2

have t as their time index. These propositional variables encode the same complete state St, so
we have ν1(ℓ@(t)) = ν2(ℓ@(t)) for all ℓ ∈ St. Hence, we may define a model ν of F as follows:

ν : var(F )→ {0, 1},

ν(x) 7→

ν1(x), if x ∈ var(F1),

ν2(x), else.

Now assume that ν is a model of the CNF formula F corresponding to π with ν(ai@i) = 1
for i = 1, . . . , t. Since ν satisfies P and I , action a1 = ⟨p1, e1⟩ is executable in state I. Define
S2 := execa1(I) and π1 := ⟨X, I, A, S2⟩. Then (a1) is a plan for π1. Now consider a2 = ⟨p2, e2⟩.
Let ℓ ∈ p2. Since subformula P is satisfied, we know that ν(ℓ@2) = 1. Assume towards a
contradiction that S2(ℓ) = 0. Then ℓ /∈ e1, so I(ℓ) = 0. Subformula I guarantees that ν(ℓ@1) = 0.
But then subformulas C01 and C10 ensure that ℓ ∈ e1. Contradiction. So S2(ℓ) = 1. Hence, action
a2 is executable in state S2. Inductively, action ai is executable in state Si := execai−1(Si−1) for
i = 3, . . . , t.

It remains to show that St+1 := execat St ⊃ G. To that end, consider ℓ ∈ G. From subformula
G, we know that ν(ℓ@(t + 1)) = 1. Assume towards a contradiction that ℓ /∈ execat St, that is,
execat St(ℓ) = 0. This implies ¬ℓ ∈ et (where et is the effects of at) or St(ℓ) = 0. If ¬ℓ ∈ et, then
subformula E guarantees that ν(ℓ@(t + 1)) = 0. Contradiction. If St(ℓ) = 0, then ν(ℓ@t) = 0.
Subformulas C01 and C10 now ensure that ℓ ∈ et. Contradiction. So execat St ⊃ G. Applying
Lemma 4.2 t− 1 times, we obtain the plan (a1, . . . , at) for problem instance π.

Once a model ν of F is found, we can read off, for each i = 1, . . . , t, which action a ∈ A satisfies
ν(a@i) = 1. These actions form a plan for getting from I to G.

4.3 Examples

In this section, I present two examples of fairly simple problems that can be formulated as
planning problems and demonstrate how these can be solved using a SAT solver. In order to
generate the CNF formulas corresponding to these problems and to display the output of the SAT

solver in a more human-friendly format, I wrote a Julia package, SatplanExamples.jl, that is
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available from https://github.com/janhove/SatplanExamples.jl. For more about the Julia
language, I refer to https://julialang.org/. For these examples, I used the SAT solver Glucose,
version 4.2.1, which is available from https://github.com/audemard/glucose.

4.3.1 The blocks world

The blocks world is a toy problem in the field of artificial intelligence. A number of labelled
blocks are laid out in stacks on a table. We can pick up blocks that are at the top of a stack and
put them on top of another stack or one the table one at a time. We want to obtain a plan for
converting the initial arrangement into some desired arrangement.

Figure 4.1 shows the initial state and the goal of a blocks world problem. Since this particular
problem cannot be solved by greedily satisfying subfeatures of the goal (e.g., putting B on C and
then figuring out how to put A on B), it is known in the literature as Sussman’s anomaly. We
spell out the state variables as follows.

• The first set of state variables specifies for each tuple of blocks (x, y) if block x is directly
on top of block y: on(A, B), on(B, A), etc.

• The second set of state variables specifies for each block if it is directly on top of the table:
on(A, table), on(B, table), etc.

• The third set specifies for each block if it is clear, that is, if there is room on top of it:
clear(A), clear(B), etc.

• Further, the table is always clear: clear(table).

Actions have the form move(x, y, z), where x is a block, y is a block or the table, and z is a block
or the table, such that x ̸= y, x ̸= z, y ̸= z. The precondition of the action move(x, y, z) is

{clear(x), on(x, y), clear(z)};

the effects of this action are

{¬on(x, y), on(x, z), clear(y),¬clear(z)},

if z is a block, and
{¬on(x, y), on(x, z), clear(y)},

if z is the table. The initial state in Figure 4.1 may be specified as

{on(A, table),¬on(A, B),¬on(A, C),¬clear(A),

on(B, table),¬on(B, A),¬on(B, C), clear(B),

¬on(C, table), on(C, A),¬on(C, B), clear(C),

clear(table)}.

https://github.com/janhove/SatplanExamples.jl
https://julialang.org/
https://github.com/audemard/glucose


48 CHAPTER 4. APPLICATION TO CLASSICAL PLANNING

B AB

C

(a) Initial state.

A

B

C

(b) Goal.

Figure 4.1: A blocks world problem known as Sussman’s anomaly.

Similarly, the goal state may be specified as

{¬on(A, table), on(A, B),¬on(A, C), clear(A),

¬on(B, table),¬on(B, A), on(B, C),¬clear(B),

on(C, table),¬on(C, A),¬on(C, B),¬clear(C),

clear(table)}.

Note that this is not the only valid way to specify the problem instance. For example, we could
have included clear(table) in the effects of all actions. We could also have included actions such
as move(A, B, B) in the action set, that is, moves whose preconditions could never be met.

The sussman() function in the Julia package generates the CNF formula for the desired number
of moves. Since it is clear that we will need three moves, we pick t = 3:

julia> cnf = sussman(3);

Using the to DIMACS() function, the cnf object can be saved in the DIMACS format required
by SAT solvers (sussman.cnf); the sussman.code serves as a codebook that will later be used for
post-processing the output produced by the solver:

julia> to_DIMACS(cnf, "sussman.cnf", "sussman.code");

Both the sussman.cnf and sussman.code file are plain text files and are available from the Julia
package’s Github page.

For t = 3, the DIMACS file contains 106 propositional variables and 927 distinct clauses. These
numbers differ markedly from those reported by Kautz & Selman (1992), whose SAT encoding of
Sussman’s anomaly comprised 127 variables and 2364 clauses. Their description suggests that
they included moves whose preconditions can never be met (e.g., move(A, B, B)) in the action
set, which would go some way towards explaining the difference. Since testing my encoding
only resulted in valid plans (for t ≥ 3) or in correct claims of unsatisfiability (for t = 1, 2), I did
not attempt to recreate a CNF encoding that matches Kautz and Selman’s exactly.

Having generated the DIMACS file, we can feed it to a SAT solver, for instance, Glucose. A model
of the CNF formula is output as sussman.soln:

(base) jan@jan-xps:~$ glucose sussman.cnf sussman.soln

For this small a formula, the solver should find a solution in perhaps a few milliseconds or less.
During preprocessing, some clauses get dropped, for instance, because they are supersets of
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other clauses. The Julia package contains some functions for post-processing the output file. If
we copy the sussman.soln file to our Julia working directory, we can output the plan in a more
readable format:

julia> print_moves("sussman.soln", "sussman.code")

3-element Vector{String}:

"move C from A to table at time 1"

"move B from table to C at time 2"

"move A from table to B at time 3"

We may also inspect the state variables that evaluate to true at a certain point in time, for instance
like so:

julia> print_state("sussman.soln", "sussman.code", 2)

7-element Vector{String}:

"C clear at time 2"

"table clear at time 2"

"B on table at time 2"

"B clear at time 2"

"C on table at time 2"

"A clear at time 2"

"A on table at time 2"

The other post-processing function provided in the package is print fullsolution(), which
does what it says on the tin.

4.3.2 The knight’s tour problem

Figure 4.2 shows how knights move in the game of chess. Given a chess board of m ranks (rows)
and n files (columns) that is otherwise empty, is it possible for a knight placed on some square
to visit all squares without visiting any twice? If we require that the knight also finish on the
square where it started, this question is known as the closed knight’s tour problem; if the knight
may finish at any square, we count its starting square as visited and refer to the problem as the
open knight’s tour problem.

Both the close and open knight’s tour problems are solved problems, and efficient graph-based
algorithms exist for finding tours, if they exist. But I find it nonetheless instructive to formulate
them as planning problems to be solved using SAT solvers, partly because they are solved
problems. For instance, it is known that no closed knight’s tours exist on a n× n board when n is
odd. Conversely, closed knight’s tours exist on any n× n board if n ≥ 6 is even (Schwenk, 1991).
Hence, we can check any claims about the (un)satisfiability of a closed knight tour’s problem
against theory. The knight’s tour problems are also useful for our present purposes because we
can easily formulate problems that differ in size simply by varying m and n.

In contrast to the blocks world example, I did not construct the CNF formula for the knight’s
tour problem by converting a classical planning problem. Instead, I expressed directly expressed
the problem in CNF form. There are different ways to do so, and I will discuss some differences
between them at the end of this chapter. I opted for the following encoding. Given board
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8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0M0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 4.2: In chess, knights move in an L-shaped pattern.

dimensions m and n as well as a desired number of moves t, we define the following propositional
variables. First, to indicate that the knight is on a given field at a given time, we use the
propositional variables on(x, y, i), where 1 ≤ x ≤ n, 1 ≤ y ≤ m, 1 ≤ i ≤ t + 1; deviating
from standard chess notation, we use numbers to refer to files rather than letters. Second, to
indicate that the knight moves to a certain square at a given time, we use to(x, y, i), where
1 ≤ x ≤ n, 1 ≤ y ≤ m, 1 ≤ i ≤ t.

We specify that exactly one move has to be made at each time i = 1, . . . , t by including the clause

{to(x, y, i) : x ∈ {1, . . . , n}, y ∈ {1, . . . , m}}

for each i = 1, . . . , t as well as the clause

¬to(x, y, i) ∨ ¬to(x̃, ỹ, i)

for each i = 1, . . . , t and each (x, y), (x̃, ỹ) ∈ {1, . . . , n} × {1, . . . , m} with (x, y) ̸= (x̃, ỹ). We
similarly specify that the knight cannot be on more than one square at a time by including the
clause

¬on(x, y, i) ∨ ¬on(x̃, ỹ, i)

for each i = 1, . . . , t + 1 and each (x, y), (x̃, ỹ) ∈ {1, . . . , n} × {1, . . . , m} with (x, y) ̸= (x̃, ỹ).

The knight moves in an L-shaped pattern, which we can encode as follows:

{¬to(x, y, i)}∪{on(x̃, ỹ, i) : 1 ≤ x̃ ≤ n, 1 ≤ ỹ ≤ m, |x̃− x| ≥ 1, |ỹ− y| ≥ 1, |x̃− x|+ |ỹ− y| = 3} ,

for each i = 1, . . . , t and each (x, y) ∈ {1, . . . , n} × {1, . . . , m}. This corresponds to the move’s
precondition. Of course, after the move, the knight is on the destination square:

¬to(x, y, i) ∨ on(x, y, i + 1),
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for each i = 1, . . . , t and each (x, y) ∈ {1, . . . , n} × {1, . . . , m}. Note that we do not have to
specify that the knight is not on its former square any more: we already specified that the knight
cannot be on more than one square at a time.

Given a starting position (x0, y0), we spell out the initial state using the clause on(x0, y0, 1); this
immediately implies ¬on(x, y, 1) for all (x, y) ̸= (x0, y0). To encode that each square must have
been visited at the start of the t + 1-th turn, we use the clauses

on(x, y, 1) ∨ · · · ∨ on(x, y, t + 1)

for all squares (x, y). If we want to obtain a closed knight’s tour, we add the clause

on(x0, y0, t + 1)

and we pick t = m · n. Since the knight needs to visit m · n squares and land on its starting square
at the end of the t-th move, this guarantees that the knight will not visit any square other than
the starting square twice. For an open knight’s tour, we pick t = m · n− 1, since the starting
square counts as visited.

Incidentally, we could add further restrictions to the problem. If, for instance, we were interested
in finding a knight’s tour where the knight is on E7 (i.e., on (5, 7)) at the start of the 23rd turn, we
just add the one-literal clause on(5, 7, 23) to the formula. By the same token, if we already had a
knight’s tour, but we wanted to know if a different one existed, we could just add the clause

¬to(x1, y1, 1) ∨ · · · ∨ ¬to(xt, yt, t),

where to(x1, y1, 1), . . . , to(xt, yt, t) represents the known knight’s tour.

The Julia package features the function knights problem() that constructs the CNF formula in
the manner outlined above. In order to generate the formula corresponding to a closed knight’s
tour on a 5-by-6 board where the knight starts on C2 (i.e., on (3, 2)), we would use

julia> cnf = knights_problem(5, 6, 5*6, [3, 2]);

We can save this formula in the DIMACS format and feed it to a SAT solver just like in the
previous example. Since a closed knight’s tour exists in this setting (Schwenk, 1991), a model for
the CNF exists and Glucose duly finds one in about five CPU seconds on my machine:1

julia> to_DIMACS(cnf, "knight5by6.cnf", "knight5by6.code");

(base) jan@jan-xps:~$ glucose -no-adapt knight5by6.cnf knight5by6.soln

[output not shown]

1A note on the timings is in order. First, Glucose’s performance, like that of several other SAT solvers, depends, among
other things, on the order of the clauses (also see Biere & Heule, 2019; Björk, 2009). The effect can be quite dramatic at
times. To see this, we can export Set(cnf) to the DIMACS format instead of cnf. This puts the clauses in the cnf object
through a hash function, effectively scrambling their order. For the example on the 5-by-6 board, this increases the time it
takes Glucose to find a solution to 19 seconds. Second, I noticed that, at least for the knight’s tour problems, Glucose
was able to find a solution considerably more quickly when I switched off one of its default features, namely adapting
its solver strategy (see Audemard & Simon, 2016). For comparison, instead of finding a solution in about five seconds
without allowing for adaptive solver strategies, it took Glucose over three minutes to find one with its default settings.
All in all, the timings reported should be taken with a grain of salt as they depend on factors that were not discussed in
any detail in this thesis.
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julia> print_moves("knight5by6.soln", "knight5by6.code")

30-element Vector{String}:

"move to 1 1 at time 1"

"move to 2 3 at time 2"

"move to 1 5 at time 3"

"move to 3 4 at time 4"

"move to 5 5 at time 5"

"move to 6 3 at time 6"

"move to 5 1 at time 7"

"move to 4 3 at time 8"

"move to 6 2 at time 9"

"move to 4 1 at time 10"

"move to 2 2 at time 11"

"move to 1 4 at time 12"

"move to 3 5 at time 13"

"move to 5 4 at time 14"

"move to 4 2 at time 15"

"move to 6 1 at time 16"

"move to 5 3 at time 17"

"move to 6 5 at time 18"

"move to 4 4 at time 19"

"move to 2 5 at time 20"

"move to 1 3 at time 21"

"move to 2 1 at time 22"

"move to 3 3 at time 23"

"move to 1 2 at time 24"

"move to 3 1 at time 25"

"move to 5 2 at time 26"

"move to 6 4 at time 27"

"move to 4 5 at time 28"

"move to 2 4 at time 29"

"move to 3 2 at time 30"

For an 8-by-8 board, the CNF formula contains 8,256 propositional variables and 268,386 clauses;
on my machine, the solver finds a closed knight’s tour in under six minutes. For a 9-by-9 board,
the formula contains 13,203 variables and 541,406 clauses, and the solver correctly concludes
after about 10 seconds that no closed knight’s tours exist.

To generate the CNF formula for an open knight’s tour, we can use

julia> cnf = knights_problem(8, 9, 8*9 - 1, [5, 6]; open_tour = true);

4.4 On the effects of encoding details

In the previous section, I mentioned in passing that the same planning problem can be represented
by different CNF encodings. Indeed, Kautz & Selman (1992, 1996) pointed out that propositional
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variables that take three or more arguments can be replaced by combinations of propositional
variables that take no more than two arguments. For instance, in the blocks world problem, the
variable move(A, B, table, 4) can be replaced by the variables object(A, 4), f rom(B, 4), to(table, 4).
This alternative encoding can reduce the number of propositional variables and clauses the CNF

formula contains, sometimes specularly so (see Kautz & Selman, 1992, Table 1). As a result, the
CNF formula can become easier to solve.

The knight’s tour problem offers a case in point of how recodings can result in simpler formulas.
Originally, I had specified the moves not as to(x, y, i) but as move(x0, y0, x1, y1, i), that is, the
moves had encoded both the source and the destination squares as opposed to just the destination
squares. Moreover, I had explicitly included variables that encoded whether a square had been
visited on the i-th turn, i.e., visited(x, y, i). The corresponding CNF formula for an 8-by-8 board,
which can be generated using the knights problem old function, contained 29,824 propositional
variables and just shy of 3.8 million clauses, and it took Glucose about eleven minutes to find
a knight’s tour using this encoding – compared to under six minutes when using the current
encoding. I refer the interested reader to the source code for knights problem old to see how
the CNF formula is constructed.

That said, I did not have any success adopting Kautz and Selman’s strategy of replacing variables
with three or more arguments by combinations of variables with two arguments: While it is
possible to recode variables of the form on(x, y, i) as on f ile(x, i) ∧ on rank(y, i) (and similarly
for to(x, y, i)), the goal condition then consists of the clauses

(on f ile(x, 1) ∧ on rank(y, 1)) ∨ · · · ∨ (on f ile(x, t + 1) ∧ on rank(y, t + 1))

for each square (x, y). Converting one such clause to an equivalent conjunction of disjunctions
would result in a subformula with 2t+1 clauses, whereas converting it to an equisatisfiable
CNF formula using the Tseitin transformation would entail introducing a new variable for each
subclause on f ile(x, i) ∧ on rank(y, i), which boils down to reintroducing the on(x, y, i) variables
into the formula.
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Krüger, Tom, Jan-Hendrik Lorenz & Florian Wörz. 2022. Too much information:
Why CDCL solvers need to forget learned clauses. PLOS ONE 17(8). e0272967.
doi:10.1371/journal.pone.0272967.

Kuiter, Elias, Sebastian Krieter, Chico Sundermann, Thomas Thüm & Gunter Saake. 2022. Tseitin
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